List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications, 2006, 316, 753-763.	1.0	370
2	Adomian decomposition: a tool for solving a system of fractional differential equations. Journal of Mathematical Analysis and Applications, 2005, 301, 508-518.	1.0	256
3	Solving a multi-order fractional differential equation using adomian decomposition. Applied Mathematics and Computation, 2007, 189, 541-548.	2.2	186
4	Solving a system of nonlinear fractional differential equations using Adomian decomposition. Journal of Computational and Applied Mathematics, 2006, 196, 644-651.	2.0	154
5	Application of Legendre wavelets for solving fractional differential equations. Computers and Mathematics With Applications, 2011, 62, 1038-1045.	2.7	149
6	Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2006-2012.	3.3	134
7	A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel. Chaos, Solitons and Fractals, 2020, 130, 109405.	5.1	125
8	Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Applied Mathematics and Computation, 2006, 180, 488-497.	2.2	124
9	Solving fractional diffusion and wave equations by modified homotopy perturbation method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 388-396.	2.1	124
10	Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. Journal of Mathematical Analysis and Applications, 2007, 328, 1026-1033.	1.0	117
11	A new approach for solving a system of fractional partial differential equations. Computers and Mathematics With Applications, 2013, 66, 838-843.	2.7	114
12	Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1962-1969.	3.3	109
13	Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Applied Mathematics and Computation, 2006, 180, 700-706.	2.2	102
14	Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations. Applied Mathematics Letters, 2011, 24, 1799-1805.	2.7	97
15	Revised Adomian decomposition method for solving a system of nonlinear equations. Applied Mathematics and Computation, 2006, 175, 1-7.	2.2	90
16	Optical Solitons in Photonic Nano Waveguides with an Improved Nonlinear Schrödinger's Equation. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1182-1191.	0.4	89
17	Analytical solutions of the Gerdjikov–Ivanov equation by using exp(â^ï†(ξ))-expansion method. Optik, 2017, 139, 72-76.	2.9	85
18	A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel. Chinese Journal of Physics, 2020, 68, 308-320.	3.9	85

#	Article	IF	CITATIONS
19	A new general integral transform for solving integral equations. Journal of Advanced Research, 2021, 32, 133-138.	9.5	74
20	A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fractional Calculus and Applied Analysis, 2013, 16, 109-122.	2.2	61
21	Numerical solutions of time-fractional Klein-Gordon equations by clique polynomials. AEJ - Alexandria Engineering Journal, 2021, 60, 4563-4571.	6.4	60
22	Fractional variational iteration method via modified Riemann–Liouville derivative. Journal of King Saud University - Science, 2011, 23, 413-417.	3.5	59
23	Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators. Advances in Mathematical Physics, 2014, 2014, 1-7.	0.8	59
24	Numerical approach of Fokker–Planck equation with Caputo–Fabrizio fractional derivative using Ritz approximation. Journal of Computational and Applied Mathematics, 2018, 339, 367-373.	2.0	59
25	Homotopy analysis method for solving multi-term linear and nonlinear diffusion–wave equations of fractional order. Computers and Mathematics With Applications, 2010, 59, 1337-1344.	2.7	58
26	Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dynamics, 2015, 81, 1569-1574.	5.2	58
27	Reduced differential transform method for partial differential equations within local fractional derivative operators. Advances in Mechanical Engineering, 2016, 8, 168781401663301.	1.6	56
28	A fractional order HIV/AIDS model based on the effect of screening of unaware infectives. Mathematical Methods in the Applied Sciences, 2019, 42, 2334-2343.	2.3	56
29	Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. Journal of Computational and Applied Mathematics, 2020, 377, 112908.	2.0	56
30	Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations. Journal of Computational and Nonlinear Dynamics, 2014, 9, .	1.2	55
31	A mathematical model and numerical solution for brain tumor derived using fractional operator. Results in Physics, 2021, 28, 104671.	4.1	50
32	Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs. Chaos, Solitons and Fractals, 2020, 135, 109736.	5.1	49
33	On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Advances in Difference Equations, 2015, 2015, .	3.5	48
34	A numerical study of fractional order population dynamics model. Results in Physics, 2021, 27, 104456.	4.1	48
35	Stability of a finite volume element method for the timeâ€fractional advectionâ€diffusion equation. Numerical Methods for Partial Differential Equations, 2018, 34, 1459-1471.	3.6	46
36	A new approach for solving integro-differential equations of variable order. Journal of Computational and Applied Mathematics, 2020, 379, 112946.	2.0	46

#	Article	IF	CITATIONS
37	Solving FDEs with Caputoâ€Fabrizio derivative by operational matrix based on Genocchi polynomials. Mathematical Methods in the Applied Sciences, 2018, 41, 9134-9141.	2.3	44
38	Numerical analysis of the fractional evolution model for heat flow in materials with memory. AEJ - Alexandria Engineering Journal, 2020, 59, 2627-2637.	6.4	44
39	Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Advances in Difference Equations, 2013, 2013, .	3.5	43
40	He's Variational Iteration Method for Solving Fractional Riccati Differential Equation. International Journal of Differential Equations, 2010, 2010, 1-8.	0.8	42
41	Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	41
42	Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Boundary Value Problems, 2015, 2015, .	0.7	40
43	Solving a fourthâ€order fractional diffusionâ€wave equation in a bounded domain by decomposition method. Numerical Methods for Partial Differential Equations, 2008, 24, 1115-1126.	3.6	39
44	Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory and Applications, 2013, 2013, .	1.1	39
45	Dark solitons of the Biswas–Milovic equation by the first integral method. Optik, 2013, 124, 3929-3932.	2.9	39
46	Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order. Open Physics, 2016, 14, 247-252.	1.7	39
47	Revised Adomian decomposition method for solving systems of ordinary and fractional differential equations. Applied Mathematics and Computation, 2006, 181, 598-608.	2.2	38
48	A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations. Journal of King Saud University - Science, 2021, 33, 101185.	3.5	38
49	The first integral method and traveling wave solutions to Davey–Stewartson equation. Nonlinear Analysis: Modelling and Control, 2012, 17, 182-193.	1.6	38
50	Solving a multi-order fractional differential equation using homotopy analysis method. Journal of King Saud University - Science, 2011, 23, 151-155.	3.5	36
51	Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates. Advances in Mathematical Physics, 2013, 2013, 1-5.	0.8	36
52	Mathematical models of HIV/AIDS and drug addiction in prisons. European Physical Journal Plus, 2020, 135, 1.	2.6	36
53	A Novel Approach for Solving an Inverse Reaction–Diffusion–Convection Problem. Journal of Optimization Theory and Applications, 2019, 183, 688-704.	1.5	34
54	A mathematical model to examine the effect of quarantine on the spread of coronavirus. Chaos, Solitons and Fractals, 2021, 142, 110418.	5.1	34

#	Article	IF	CITATIONS
55	ON THE APPROXIMATE SOLUTIONS FOR A SYSTEM OF COUPLED KORTEWEG–DE VRIES EQUATIONS WITH LOCAL FRACTIONAL DERIVATIVE. Fractals, 2021, 29, 2140012.	3.7	34
56	Mathematical analysis of a stochastic model for spread of Coronavirus. Chaos, Solitons and Fractals, 2021, 145, 110788.	5.1	34
57	A numerical approach for solving fractional optimal control problems with mittag-leffler kernel. JVC/Journal of Vibration and Control, 2022, 28, 2596-2606.	2.6	34
58	Numerical evaluation of fractional Tricomi-type model arising from physical problems of gas dynamics. Journal of Advanced Research, 2020, 25, 205-216.	9.5	33
59	A novel numerical manner for twoâ€dimensional space fractional diffusion equation arising in transport phenomena. Numerical Methods for Partial Differential Equations, 2021, 37, 1397-1406.	3.6	33
60	The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative. Abstract and Applied Analysis, 2014, 2014, 1-5.	0.7	32
61	Travelling wave solutions of nonlinear evolution equations using the simplest equation method. Computers and Mathematics With Applications, 2012, 64, 2084-2088.	2.7	30
62	Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Thermal Science, 2020, 24, 49-58.	1.1	30
63	A mathematical model for simulation of a water table profile between two parallel subsurface drains using fractional derivatives. Computers and Mathematics With Applications, 2013, 66, 785-794.	2.7	29
64	A Numerical Approach for Fractional Order Riccati Differential Equation Using B-Spline Operational Matrix. Fractional Calculus and Applied Analysis, 2015, 18, 387-399.	2.2	29
65	Derivation of a fractional Boussinesq equation for modelling unconfined groundwater. European Physical Journal: Special Topics, 2013, 222, 1805-1812.	2.6	28
66	Numerical Solution of Nonlinear Reaction–Advection–Diffusion Equation. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	28
67	The variational iteration method for solving n-th order fuzzy differential equations. Open Physics, 2012, 10, .	1.7	27
68	An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. Advances in Difference Equations, 2019, 2019, .	3.5	27
69	New solitary wave solutions for the bad Boussinesq and good Boussinesq equations. Numerical Methods for Partial Differential Equations, 2009, 25, 1231-1237.	3.6	26
70	Results for Mild solution of fractional coupled hybrid boundary value problems. Open Mathematics, 2015, 13, .	1.0	26
71	Study of fractional order Van der Pol equation. Journal of King Saud University - Science, 2016, 28, 55-60.	3.5	26
72	A Numerical Approach for Multi-variable Orders Differential Equations Using Jacobi Polynomials. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	1.6	26

#	Article	IF	CITATIONS
73	Reduced differential transform and variational iteration methods for 3-D diffusion model in fractal heat transfer within local fractional operators. Thermal Science, 2018, 22, 301-307.	1.1	26
74	On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators. Entropy, 2016, 18, 150.	2.2	25
75	A new numerical method to solve pantograph delay differential equations with convergence analysis. Advances in Difference Equations, 2021, 2021, .	3.5	24
76	On the Exact Solution of Wave Equations on Cantor Sets. Entropy, 2015, 17, 6229-6237.	2.2	23
77	A numerical approach for solving variable order differential equations based on Bernstein polynomials. Computational and Mathematical Methods, 2019, 1, e1055.	0.8	22
78	A decomposition method for solving diffusion equations via local fractional time derivative. Thermal Science, 2015, 19, 123-129.	1.1	22
79	A numerical scheme to solve variable order diffusion-wave equations. Thermal Science, 2019, 23, 2063-2071.	1.1	22
80	Numerical method for the wave and nonlinear diffusion equations with the homotopy perturbation method. Computers and Mathematics With Applications, 2009, 57, 1226-1231.	2.7	21
81	Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation. Open Physics, 2013, 11, .	1.7	21
82	A comparison between the variational iteration method and the successive approximations method. Applied Mathematics Letters, 2014, 32, 1-5.	2.7	21
83	On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy, 2016, 18, 420.	2.2	21
84	Numerical solutions of multi-order fractional differential equations by Boubaker polynomials. Open Physics, 2016, 14, 226-230.	1.7	21
85	Numerical Solution of Time-Fractional Klein–Gordon Equation by Using the Decomposition Methods. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	1.2	21
86	A new method for calculating general lagrange multiplier in the variational iteration method. Numerical Methods for Partial Differential Equations, 2011, 27, 996-1001.	3.6	20
87	An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation. Mathematical and Computer Modelling, 2012, 55, 1782-1786.	2.0	19
88	On the existence of solution for fractional differential equations of order 3 < δ1 ≤4 \$3 <delta_{1}leq4\$. .<="" 2015,="" advances="" difference="" equations,="" in="" td=""><td>3.5</td><td>19</td></delta_{1}leq4\$.>	3.5	19
89	Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials. Engineering With Computers, 2020, , 1.	6.1	19
90	Local fractional system for economic order quantity using entropy solution. Advances in Difference Equations, 2019, 2019, .	3.5	18

#	Article	IF	CITATIONS
91	A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. Symmetry, 2020, 12, 904.	2.2	18
92	Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3685.	1.1	17
93	A new approach for solving nonlinear Volterra integro-differential equations with MittagLeffler kernel. Proceedings of the Institute of Mathematics and Mechanics, 2020, 46, 144-158.	0.2	17
94	The homotopy analysis method for solving higher dimensional initial boundary value problems of variable coefficients. Numerical Methods for Partial Differential Equations, 2010, 26, 1021-1032.	3.6	16
95	Homotopy Perturbation Pade Technique for Solving Fractional Riccati Differential Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11, .	1.0	16
96	The G′/G-expansion method for solutions of evolution equations from isothermal magnetostatic atmospheres. Journal of King Saud University - Science, 2013, 25, 57-62.	3.5	16
97	SOLUTION OF THE LOCAL FRACTIONAL GENERALIZED KDV EQUATION USING HOMOTOPY ANALYSIS METHOD. Fractals, 2021, 29, 2140014.	3.7	16
98	New general integral transform via Atangana–Baleanu derivatives. Advances in Difference Equations, 2021, 2021, .	3.5	16
99	On systems of nonlinear equations: some modified iteration formulas by the homotopy perturbation method with accelerated fourth- and fifth-order convergence. Applied Mathematical Modelling, 2016, 40, 1467-1476.	4.2	15
100	New solitary wave solutions for generalized regularized long-wave equation. International Journal of Computer Mathematics, 2010, 87, 509-514.	1.8	14
101	Variational Iteration Method for a Fractional-Order Brusselator System. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	14
102	On comparison between iterative methods for solving nonlinear optimal control problems. JVC/Journal of Vibration and Control, 2016, 22, 2281-2287.	2.6	14
103	Computational method based on Bernstein operational matrices for multi-order fractional differential equations. Filomat, 2014, 28, 591-601.	0.5	14
104	Group classification of the time-fractional Kaup-Kupershmidt equation. Scientia Iranica, 2017, 24, 302-307.	0.4	14
105	Towards new general double integral transform and its applications to differential equations. Mathematical Methods in the Applied Sciences, 2022, 45, 1916-1933.	2.3	14
106	Exact solutions of two nonlinear partial differential equations by using the first integral method. Boundary Value Problems, 2013, 2013, .	0.7	13
107	The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati Differential Equations with the Riemann-Liouville Derivative. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.7	13
108	On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29, 1709-1734.	0.9	13

#	Article	IF	CITATIONS
109	New method for solving a class of fractional partial differential equations with applications. Thermal Science, 2018, 22, 277-286.	1.1	13
110	On a Numerical Approach to Solve Multi-Order Fractional Differential Equations With Initial/Boundary Conditions. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	1.2	12
111	Solution of Higher Order Nonlinear Time-Fractional Reaction Diffusion Equation. Entropy, 2016, 18, 329.	2.2	12
112	Approximate Analytical Solution of a Coupled System of Fractional Partial Differential Equations by Bernstein Polynomials. International Journal of Applied and Computational Mathematics, 2016, 2, 85-96.	1.6	12
113	A new algorithm for solving dynamic equations on a time scale. Journal of Computational and Applied Mathematics, 2017, 312, 167-173.	2.0	12
114	Error estimate of the MQ-RBF collocation method for fractional differential equations with Caputo–Fabrizio derivative. Mathematical Sciences, 2017, 11, 297-305.	1.7	12
115	A semiâ€∎nalytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers. Mathematical Methods in the Applied Sciences, 0, , .	2.3	12
116	A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order. Journal of Computational and Applied Mathematics, 2022, 403, 113845.	2.0	12
117	Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme. Chaos, Solitons and Fractals, 2021, 149, 111018.	5.1	11
118	More efficient estimates via â,,•discrete fractional calculus theory and applications. Chaos, Solitons and Fractals, 2021, 147, 110981.	5.1	10
119	Complex B-spline Collocation method for solving weakly singular Volterra integral equations of the second kind. Miskolc Mathematical Notes, 2015, 16, 1091-1103.	0.6	10
120	Homotopy analysis method for solving Abel differential equation of fractional order. Open Physics, 2013, 11, .	1.7	8
121	Numerical solution of fractional differential equations by using fractional B-spline. Open Physics, 2013, 11, .	1.7	8
122	Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	8
123	Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	8
124	Stability of Dirac Equation in Four-Dimensional Gravity. Chinese Physics Letters, 2017, 34, 060301.	3.3	8
125	Solution of time-fractional Cahn–Hilliard equation with reaction term using homotopy analysis method. Advances in Mechanical Engineering, 2017, 9, 168781401774077.	1.6	8
126	Fractional calculus in data fitting. AEJ - Alexandria Engineering Journal, 2020, 59, 3269-3274.	6.4	8

#	Article	IF	CITATIONS
127	THE NUMERICAL STRATEGY OF TEMPERED FRACTIONAL DERIVATIVE IN EUROPEAN DOUBLE BARRIER OPTION. Fractals, 2022, 30, .	3.7	8
128	Analytical method to solve the local fractional vehicular traffic flow model. Mathematical Methods in the Applied Sciences, 2022, 45, 3983-4001.	2.3	8
129	Partial Fractional Equations and Their Applications. Mathematical Problems in Engineering, 2015, 2015, 1-1.	1.1	7
130	Fractional derivative generalization of Noetherâ \in Ms theorem. Open Mathematics, 2015, 13, .	1.0	7
131	Analysis of Riccati Differential Equations within a New Fractional Derivative without Singular Kernel. Fundamenta Informaticae, 2017, 151, 161-171.	0.4	7
132	Differential Transform Method: A Tool for Solving Fuzzy Differential Equations. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	1.6	7
133	Picard Successive Approximation Method for Solving Differential Equations Arising in Fractal Heat Transfer with Local Fractional Derivative. Abstract and Applied Analysis, 2014, 2014, 1-5.	0.7	6
134	Local Fractional Variational Iteration Method for Local Fractional Poisson Equations in Two Independent Variables. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	6
135	Mathematical Models Arising in the Fractal Forest Gap via Local Fractional Calculus. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	6
136	Application of Homotopy Perturbation Method for Heat and Mass Transfer in the Two-Dimensional Unsteady Flow Between Parallel Plates. International Journal of Applied and Computational Mathematics, 2017, 3, 1677-1688.	1.6	6
137	On an initial value problem for time fractional pseudoâ€parabolic equation with Caputo derivative. Mathematical Methods in the Applied Sciences, 0, , .	2.3	6
138	Lie symmetry reductions and conservation laws for fractional order coupled KdV system. Advances in Difference Equations, 2020, 2020, .	3.5	6
139	OPTIMAL SYSTEM AND SYMMETRY REDUCTION OF THE (1+1) DIMENSIONAL SAWADA-KOTERA EQUATION. International Journal of Pure and Applied Mathematics, 2016, 108, .	0.2	6
140	An operational matrix for solving time-fractional order Cahn-Hilliard equation. Thermal Science, 2019, 23, 2045-2052.	1.1	6
141	Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations. Advances in Difference Equations, 2021, 2021, 435.	3.5	6
142	Application of variational iteration method for modified Camassaâ€Holm and Degasperisâ€Procesi equations. Numerical Methods for Partial Differential Equations, 2010, 26, 1033-1039.	3.6	5
143	Homotopy analysis method for solving a couple of evolution equations and comparison with Adomian's decomposition method. Waves in Random and Complex Media, 2011, 21, 657-667.	2.7	5
144	Revised Variational Iteration Method for Solving Systems of Nonlinear Fractional-Order Differential Equations. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.7	5

#	Article	IF	CITATIONS
145	A Decomposition Method for Solving the Fractional Davey-Stewartson Equations. International Journal of Applied and Computational Mathematics, 2015, 1, 559-568.	1.6	5
146	An effective approach to solve a system fractional differential equations. AEJ - Alexandria Engineering Journal, 2020, 59, 3213-3219.	6.4	5
147	Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2025.	1.1	5
148	Variational Iteration Method A Tools For Solving Partial Differential Equations. Journal of Mathematics and Computer Science, 2011, 02, 388-393.	1.0	5
149	Fractional calculus for modeling unconfined groundwater. , 2019, , 119-138.		5
150	Analysis of nonlinear oscillation systems using He's variational approach. Journal of Physics: Conference Series, 2008, 96, 012077.	0.4	4
151	Fractional calculus: theory and numerical methods. Open Physics, 2013, 11, .	1.7	4
152	A Comparison between Adomian's Polynomials and He's Polynomials for Nonlinear Functional Equations. Mathematical Problems in Engineering, 2013, 2013, 1-4.	1.1	4
153	LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD FOR SOLVING VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITHIN LOCAL FRACTIONAL OPERATORS. Journal of Mathematics and Statistics, 2014, 10, 401-407.	0.2	4
154	Reductions and conservation laws for BBM and modified BBM equations. Open Mathematics, 2016, 14, 1138-1148.	1.0	4
155	Fuzzy Malliavin derivative and linear Skorohod fuzzy stochastic differential equation. Journal of Intelligent and Fuzzy Systems, 2018, 35, 2447-2458.	1.4	4
156	On Iterative Solutions and Error Estimations of a Coupled System of Fractional Order Differential-Integral Equations with Initial and Boundary Conditions. Differential Equations and Dynamical Systems, 2020, 28, 1059-1071.	1.0	4
157	Approximate technique for solving fractional variational problems. Pramana - Journal of Physics, 2020, 94, 1.	1.8	4
158	Existence and uniqueness of the solutions of the nonlinear impulse differential equations with nonlocal boundary conditions. Quaestiones Mathematicae, 2022, 45, 1399-1412.	0.6	4
159	Lie symmetry and μ-symmetry methods for nonlinear generalized Camassa–Holm equation. Advances in Difference Equations, 2021, 2021, .	3.5	4
160	Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients. Studies in Systems, Decision and Control, 2022, , 207-227.	1.0	4
161	Numerical approach to simulate diffusion model of a fluid-flow in a porous media. Thermal Science, 2021, 25, 255-261.	1.1	4
162	Exact Solutions ofí•4Equation Using Lie Symmetry Approach along with the Simplest Equation and Exp-Function Methods. Abstract and Applied Analysis, 2012, 2012, 1-7.	0.7	3

#	Article	IF	CITATIONS
163	Exact Travelling Wave Solutions for Isothermal Magnetostatic Atmospheres by Fan Subequation Method. Abstract and Applied Analysis, 2012, 2012, 1-11.	0.7	3
164	An Adaptive Collocation Method for Solving Delay Fractional Differential Equations. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	1.6	3
165	A Decomposition Method for Solving Quaternion Differential Equations. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	1.6	3
166	Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3747.	1.1	3
167	A Chebyshev Collocation Approach to Solve Fractional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Nonlocal Condition. Fractal and Fractional, 2022, 6, 160.	3.3	3
168	Numerical Solution of Non-linear Riccati Differential Equations with Fractional Order. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11, .	1.0	2
169	Application of homotopy perturbation method to multidimensional partial differential equations. International Journal of Computer Mathematics, 2010, 87, 2444-2449.	1.8	2
170	The Variational IterationMethod for Finding Exact Solution of Nonlinear Gas Dynamics Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2011, 66, 161-164.	1.5	2
171	Comments on "He's Homotopy Perturbation Method for Calculating Adomian Polynomialsâ€. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, 339-343.	1.0	2
172	Application of Lie Symmetry Analysis and Simplest Equation Method for Finding Exact Solutions of Boussinesq Equations. Mathematical Problems in Engineering, 2013, 2013, 1-4.	1.1	2
173	Homotopy Perturbation Method to Obtain Positive Solutions of Nonlinear Boundary Value Problems of Fractional Order. Abstract and Applied Analysis, 2014, 2014, 1-5.	0.7	2
174	Bivariate Generalized Taylor's Formula and Its Applications to Solve FPDEs. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	2
175	New Exact-analytical Solutions For The Mkdv Equation. Journal of Mathematics and Computer Science, 2011, 02, 413-416.	1.0	2
176	Davey-Stewartson Equation with Fractional Coordinate Derivatives. Scientific World Journal, The, 2013, 2013, 1-8.	2.1	1
177	Recent Development in Partial Differential Equations and Their Applications. Scientific World Journal, The, 2014, 2014, 1-1.	2.1	1
178	A New Approach to Solve Linear Systems. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	1
179	A fixed point theorem on multiplicative metric space with integral-type inequality. Journal of Mathematics and Computer Science, 2017, 18, 18-28.	1.0	1
180	Solving time-fractional chemical engineering equations by generalized differential transform method. Thermal Science, 2020, 24, 157-164.	1.1	1

#	Article	IF	CITATIONS
181	An efficient computational scheme to solve a class of fractional stochastic systems with mixed delays. Communications in Nonlinear Science and Numerical Simulation, 2022, 111, 106408.	3.3	1
182	The Temperature Distributions of Trapezoidal Fin Under Periodic Thermal Conditions. , 2008, , .		0
183	An Interior Inverse Problem for the Diffusion Operator. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.7	0
184	Analytical and Numerical Approaches for Complicated Nonlinear Equations. Abstract and Applied Analysis, 2014, 2014, 1-1.	0.7	0
185	Recent Advances on Methods and Applications of Nonlinear Differential Equations. Mathematical Problems in Engineering, 2014, 2014, 1-1.	1.1	0
186	On a numerical solution for fractional differential equation within B-spline operational matrix. , 2014, , .		0
187	On integral equations with Weakly Singular kernel by using Taylor series and Legendre polynomials. Open Physics, 2015, 13, .	1.7	0
188	Local Fractional Laplace Decomposition Method for Solving Linear Partial Differential Equations with Local Fractional Derivative. , 2015, , 286-306.		0
189	A numerical scheme to solve a class of two-dimensional nonlinear time-fractional diffusion equations of distributed order. Engineering With Computers, 2020, , 1.	6.1	0
190	On The Anisotropic Wiener-hopf Operator, Connected With Helmholtze-sohrodinger Equation. Journal of Mathematics and Computer Science, 2012, 04, 301-309.	1.0	0
191	Inverse Problem Approach to Machine Learning with Application in the Option Price Correction. Optical Memory and Neural Networks (Information Optics), 2022, 31, 46-58.	1.0	0