## Ricardo F Frausto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8648055/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tumor Regression by Targeted Gene Delivery to the Neovasculature. Science, 2002, 296, 2404-2407.                                                                                                                                        | 12.6 | 852       |
| 2  | Role of Raf in Vascular Protection from Distinct Apoptotic Stimuli. Science, 2003, 301, 94-96.                                                                                                                                          | 12.6 | 322       |
| 3  | Differential αv integrin–mediated Ras-ERK signaling during two pathways of angiogenesis. Journal of<br>Cell Biology, 2003, 162, 933-943.                                                                                                | 5.2  | 248       |
| 4  | Trans-Signaling Is a Dominant Mechanism for the Pathogenic Actions of Interleukin-6 in the Brain.<br>Journal of Neuroscience, 2014, 34, 2503-2513.                                                                                      | 3.6  | 194       |
| 5  | Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy, 2009, 5, 152-158.                                                                                                                               | 9.1  | 132       |
| 6  | Site-Specific Production of IL-6 in the Central Nervous System Retargets and Enhances the<br>Inflammatory Response in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2009,<br>183, 2079-2088.                        | 0.8  | 108       |
| 7  | Fibronectin- and Vitronectin-Induced Microglial Activation and Matrix Metalloproteinase-9<br>Expression Is Mediated by Integrins α5β1 and αvβ5. Journal of Immunology, 2007, 178, 8158-8167.                                            | 0.8  | 105       |
| 8  | Astrocytic Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination. Journal of Neuroscience, 2011, 31, 6247-6254.                                                        | 3.6  | 101       |
| 9  | Genetics of the corneal endothelial dystrophies: an evidence-based review. Clinical Genetics, 2013, 84, 109-119.                                                                                                                        | 2.0  | 87        |
| 10 | Persistent Macrophage/Microglial Activation and Myelin Disruption after Experimental Autoimmune<br>Encephalomyelitis in Tissue Inhibitor of Metalloproteinase-1-Deficient Mice. American Journal of<br>Pathology, 2006, 169, 2104-2116. | 3.8  | 85        |
| 11 | A novel method to establish microgliaâ€free astrocyte cultures: Comparison of matrix<br>metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia, 2008, 56,<br>1187-1198.                               | 4.9  | 73        |
| 12 | Analysis of IL-6/gp130 family receptor expression reveals that in contrast to astroglia, microglia lack the oncostatin M receptor and functional responses to oncostatin M. Glia, 2015, 63, 132-141.                                    | 4.9  | 59        |
| 13 | Transcriptomic Analysis of Cultured Corneal Endothelial Cells as a Validation for Their Use in Cell<br>Replacement Therapy. Cell Transplantation, 2016, 25, 1159-1176.                                                                  | 2.5  | 58        |
| 14 | Classification of Posterior Polymorphous Corneal Dystrophy as a Corneal Ectatic Disorder<br>Following Confirmation of Associated Significant Corneal Steepening. JAMA Ophthalmology, 2013, 131,<br>1583.                                | 2.5  | 41        |
| 15 | Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion.<br>Scientific Reports, 2020, 10, 7402.                                                                                               | 3.3  | 41        |
| 16 | Multifunctional ion transport properties of human SLC4A11: comparison of the SLC4A11-B and SLC4A11-C variants. American Journal of Physiology - Cell Physiology, 2016, 311, C820-C830.                                                  | 4.6  | 40        |
| 17 | Amelioration of Coxsackievirus B3-Mediated Myocarditis by Inhibition of Tissue Inhibitors of Matrix<br>Metalloproteinase-1. American Journal of Pathology, 2007, 171, 1762-1773.                                                        | 3.8  | 35        |
| 18 | Functional Impact of <i>ZEB1</i> Mutations Associated With Posterior Polymorphous and Fuchs'<br>Endothelial Corneal Dystrophies. , 2014, 55, 6159.                                                                                      |      | 34        |

RICARDO F FRAUSTO

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gain-of-Function Mutational Activation of Human tRNA Synthetase Procytokine. Chemistry and Biology, 2007, 14, 1323-1333.                                                                                                                         | 6.0 | 33        |
| 20 | Coxsackievirus Preferentially Replicates and Induces Cytopathic Effects in Undifferentiated Neural<br>Progenitor Cells. Journal of Virology, 2011, 85, 5718-5732.                                                                                | 3.4 | 31        |
| 21 | Posterior Amorphous Corneal Dystrophy Is Associated with a Deletion of Small Leucine-rich<br>Proteoglycans on Chromosome 12. PLoS ONE, 2014, 9, e95037.                                                                                          | 2.5 | 28        |
| 22 | Pre-Descemet Corneal Dystrophy and X-Linked Ichthyosis Associated With Deletion of Xp22.31<br>Containing the STS Gene. Cornea, 2013, 32, 1283-1287.                                                                                              | 1.7 | 26        |
| 23 | Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. , 2017, 58, 3202.                                                                                                                                                          |     | 24        |
| 24 | Transcriptome Analysis of the Human Corneal Endothelium. Investigative Ophthalmology and Visual<br>Science, 2014, 55, 7821-7830.                                                                                                                 | 3.3 | 23        |
| 25 | ZEB1 insufficiency causes corneal endothelial cell state transition and altered cellular processing.<br>PLoS ONE, 2019, 14, e0218279.                                                                                                            | 2.5 | 20        |
| 26 | Confirmation of the OVOL2 Promoter Mutation c307T>C in Posterior Polymorphous Corneal Dystrophy 1. PLoS ONE, 2017, 12, e0169215.                                                                                                                 | 2.5 | 20        |
| 27 | Posterior polymorphous corneal dystrophy 3 is associated with agenesis and hypoplasia of the corpus callosum. Vision Research, 2014, 100, 88-92.                                                                                                 | 1.4 | 18        |
| 28 | Exclusion of pathogenic promoter region variants and identification of novel nonsense mutations in<br>the zinc finger E-box binding homeobox 1 gene in posterior polymorphous corneal dystrophy.<br>Molecular Vision, 2013, 19, 575-80.          | 1.1 | 18        |
| 29 | Energy Shortage in Human and Mouse Models of <i>SLC4A11</i> -Associated Corneal Endothelial Dystrophies. , 2020, 61, 39.                                                                                                                         |     | 16        |
| 30 | Myelin oligodendrocyte glycoprotein peptide-induced experimental allergic encephalomyelitis and T<br>cell responses are unaffected by immunoproteasome deficiency. Journal of Neuroimmunology, 2007,<br>192, 124-133.                            | 2.3 | 14        |
| 31 | Intravenous administration of human embryonic stem cell-derived neural precursor cells attenuates cuprizone-induced central nervous system (CNS) demyelination. Neuropathology and Applied Neurobiology, 2011, 37, 643-653.                      | 3.2 | 14        |
| 32 | Variant lattice corneal dystrophy associated with compound heterozygous mutations in the <i>TGFBI</i> gene. British Journal of Ophthalmology, 2017, 101, 509-513.                                                                                | 3.9 | 13        |
| 33 | Elucidating the molecular basis of PPCD: Effects of decreased ZEB1 expression on corneal endothelial cell function. Molecular Vision, 2017, 23, 740-752.                                                                                         | 1.1 | 13        |
| 34 | X-linked Megalocornea Associated with the Novel <i>CHRDL1</i> Gene Mutation p.(Pro56Leu*8).<br>Ophthalmic Genetics, 2015, 36, 145-148.                                                                                                           | 1.2 | 10        |
| 35 | Whole Exome Sequencing and Segregation Analysis Confirms That a Mutation in COL17A1 Is the Cause of Epithelial Recurrent Erosion Dystrophy in a Large Dominant Pedigree Previously Mapped to Chromosome 10q23-q24. PLoS ONE, 2016, 11, e0157418. | 2.5 | 10        |
| 36 | Identification of novel PIKFYVE gene mutations associated with Fleck corneal dystrophy. Molecular Vision, 2015, 21, 1093-100.                                                                                                                    | 1.1 | 10        |

RICARDO F FRAUSTO

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hereditary Benign Intraepithelial Dyskeratosis: Report of a Case and Re-examination of the Evidence for<br>Locus Heterogeneity. Ophthalmic Genetics, 2016, 37, 1-5.                             | 1.2 | 9         |
| 38 | Identification of the First <i>De Novo UBIAD1</i> Gene Mutation Associated with Schnyder Corneal Dystrophy. Journal of Ophthalmology, 2016, 2016, 1-9.                                          | 1.3 | 9         |
| 39 | Identification of Potentially Pathogenic Variants in the Posterior Polymorphous Corneal Dystrophy 1<br>Locus. PLoS ONE, 2016, 11, e0158467.                                                     | 2.5 | 9         |
| 40 | Investigating the Molecular Basis of PPCD3: Characterization of ZEB1 Regulation of <i>COL4A3</i> Expression. , 2016, 57, 4136.                                                                  |     | 5         |
| 41 | Identification of presumed pathogenic KRT3 and KRT12 gene mutations associated with Meesmann corneal dystrophy. Molecular Vision, 2015, 21, 1378-86.                                            | 1.1 | 5         |
| 42 | Vortex Pattern of Corneal Deposits in Granular Corneal Dystrophy Associated With the p.(Arg555Trp)<br>Mutation in TGFBI. Cornea, 2017, 36, 210-216.                                             | 1.7 | 4         |
| 43 | Multimodal Imaging of Pre-Descemet Corneal Dystrophy Associated With X-Linked Ichthyosis and Deletion of the STS Gene. Cornea, 2020, 39, 1442-1445.                                             | 1.7 | 4         |
| 44 | Confirmation and refinement of the heterozygous deletion of the small leucine-rich proteoglycans associated with posterior amorphous corneal dystrophy. Ophthalmic Genetics, 2018, 39, 419-424. | 1.2 | 3         |
| 45 | PS1-051 The role of transsignaling in mediating interleukin-6 (IL-6) actions in the central nervous system (CNS). Cytokine, 2011, 56, 30.                                                       | 3.2 | 0         |
| 46 | 121. Cytokine, 2013, 63, 271.                                                                                                                                                                   | 3.2 | 0         |
| 47 | Achieving specificity in the glial cell response to the gp130 cytokines. Journal of Neuroimmunology, 2014, 275, 142.                                                                            | 2.3 | 0         |
| 48 | Corneal ectasia associated with posterior lamellar opacification. Ophthalmic Genetics, 2021, 42, 486-492.                                                                                       | 1.2 | 0         |
| 49 | Anti-desmoglein 3-mediated pathology of the human corneal epithelium in pemphigus vulgaris. Revista<br>Mexicana De OftalmologÃa (English Edition), 2019, 93, .                                  | 0.0 | 0         |