
Alexandr N Simonov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8647572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Low ost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, 2101148.	3.0	14
2	Impurity Tolerance of Unsaturated Ni-N-C Active Sites for Practical Electrochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 920-928.	8.8	47
3	Competition between metal-catalysed electroreduction of dinitrogen, protons, and nitrogen oxides: a DFT perspective. Catalysis Science and Technology, 2022, 12, 2856-2864.	2.1	8
4	Characterization of Energy Materials with X-ray Absorption Spectroscopy─Advantages, Challenges, and Opportunities. Energy & Fuels, 2022, 36, 2369-2389.	2.5	19
5	Durable Electrooxidation of Acidic Water Catalysed by a Cobaltâ€Bismuthâ€based Oxide Composite: An Unexpected Role of the Fâ€doped SnO ₂ Substrate. ChemCatChem, 2022, 14, .	1.8	9
6	Redox Properties of Iron Sulfides: Direct <i>versus</i> Catalytic Reduction and Implications for Catalyst Design. ChemCatChem, 2022, 14, .	1.8	5
7	Self-Enhancement of Efficiency and Self-Attenuation of Hysteretic Behavior of Perovskite Solar Cells with Aging. Journal of Physical Chemistry Letters, 2022, 13, 2792-2799.	2.1	16
8	Stable and Efficient Lithium Metal Anode Cycling through Understanding the Effects of Electrolyte Composition and Electrode Preconditioning. Chemistry of Materials, 2022, 34, 165-177.	3.2	22
9	Radical doped hole transporting material for high-efficiency and thermostable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 10604-10613.	5.2	13
10	Electrocatalytic Oxidation of Hydrogen as an Anode Reaction for the Li-Mediated N ₂ Reduction to Ammonia. ACS Catalysis, 2022, 12, 5231-5246.	5.5	12
11	Tracking the transient: Real-time exploration of electromaterials by dynamic single energy X-ray spectroelectrochemistry. Current Opinion in Electrochemistry, 2022, 35, 101038.	2.5	2
12	Reassessment of the catalytic activity of bismuth for aqueous nitrogen electroreduction. Nature Catalysis, 2022, 5, 382-384.	16.1	14
13	Intrinsic Catalytic Activity for the Alkaline Hydrogen Evolution of Layer-Expanded MoS ₂ Functionalized with Nanoscale Ni and Co Sulfides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7117-7133.	3.2	6
14	Tuning the Coordination Structure of CuNC Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO ₂ and NO ₃ [–] to Urea. Advanced Energy Materials, 2022, 12, .	10.2	98
15	Nanoscale TiO ₂ Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 33130-33140.	4.0	13
16	Solution Processable Direct Bandgap Copperâ€Silverâ€Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Properties. Advanced Energy Materials, 2022, 12, .	10.2	17
17	(Digital Presentation) Towards Li-Mediated Nitrogen Reduction Reaction at High Current-to-Ammonia Efficiency. ECS Meeting Abstracts, 2022, MA2022-01, 1788-1788.	0.0	0
18	Electrochemically Induced Generation of Extraneous Nitrite and Ammonia in Organic Electrolyte Solutions During Nitrogen Reduction Experiments. ChemElectroChem, 2021, 8, 1596-1604.	1.7	17

#	Article	IF	CITATIONS
19	Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites. ACS Nano, 2021, 15, 7860-7878.	7.3	40
20	Understanding the Factors Determining the Faradaic Efficiency and Rate of the Lithium Redox-Mediated N ₂ Reduction to Ammonia. Journal of Physical Chemistry C, 2021, 125, 11402-11410.	1.5	26
21	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€5elective Selfâ€Healing Mechanism. Angewandte Chemie - International Edition, 2021, 60, 15821-15826.	7.2	23
22	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie, 2021, 133, 15955-15960.	1.6	3
23	Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372, 1187-1191.	6.0	289
24	Copperâ€Catalyzed Electrosynthesis of Nitrite and Nitrate from Ammonia: Tuning the Selectivity via an Interplay Between Homogeneous and Heterogeneous Catalysis. ChemSusChem, 2021, 14, 4793-4801.	3.6	13
25	(Keynote) Towards Robust Li-Mediated Electrosynthesis of Ammonia at High Rate and Faradaic Efficiency. ECS Meeting Abstracts, 2021, MA2021-02, 1545-1545.	0.0	0
26	Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperatures. Journal of Materials Chemistry A, 2021, 9, 27468-27484.	5.2	19
27	Enhancement of the intrinsic light harvesting capacity of Cs ₂ AgBiBr ₆ double perovskite <i>via</i> modification with sulphide. Journal of Materials Chemistry A, 2020, 8, 2008-2020.	5.2	54
28	Liquefied Sunshine: Transforming Renewables into Fertilizers and Energy Carriers with Electromaterials. Advanced Materials, 2020, 32, e1904804.	11.1	49
29	Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nature Communications, 2020, 11, 5546.	5.8	264
30	Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nature Materials, 2020, 19, 1096-1101.	13.3	156
31	A Roadmap to the Ammonia Economy. Joule, 2020, 4, 1186-1205.	11.7	782
32	Refining Universal Procedures for Ammonium Quantification via Rapid ¹ H NMR Analysis for Dinitrogen Reduction Studies. ACS Energy Letters, 2020, 5, 736-741.	8.8	93
33	Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability. ACS Applied Materials & Interfaces, 2020, 12, 8260-8270.	4.0	42
34	2,6-Diiminopyridine complexes of group 2 metals: synthesis, characterisation and redox behaviour. Dalton Transactions, 2020, 49, 6627-6634.	1.6	8
35	Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering. Solar Energy, 2020, 202, 198-203.	2.9	49
36	Outstanding Reviewers for Energy & Environmental Science in 2019. Energy and Environmental Science, 2020, 13, 1299-1299.	15.6	0

AlexandrÂN Simonov

#	Article	IF	CITATIONS
37	Electroreduction of Nitrates, Nitrites, and Gaseous Nitrogen Oxides: A Potential Source of Ammonia in Dinitrogen Reduction Studies. ACS Energy Letters, 2020, 5, 2095-2097.	8.8	170
38	Is Molybdenum Disulfide Modified with Molybdenum Metal Catalytically Active for the Nitrogen Reduction Reaction?. Journal of the Electrochemical Society, 2020, 167, 146507.	1.3	16
39	Water Oxidation in Acidic Solutions: Beyond Noble Metals. ECS Meeting Abstracts, 2020, MA2020-01, 1539-1539.	0.0	0
40	(Invited) Critical Assessment of Aqueous Electrochemical Synthesis of NH3: N2 Reduction Versus NOx Reduction. ECS Meeting Abstracts, 2020, MA2020-01, 1820-1820.	0.0	0
41	Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4675-4682.	2.1	13
42	Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. Journal of Physical Chemistry C, 2019, 123, 28533-28549.	1.5	24
43	Evolution of Oxygen–Metal Electron Transfer and Metal Electronic States During Manganese Oxide Catalyzed Water Oxidation Revealed with Inâ€Situ Soft Xâ€Ray Spectroscopy. Angewandte Chemie, 2019, 131, 3464-3470.	1.6	28
44	Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nature Catalysis, 2019, 2, 457-465.	16.1	117
45	Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catalysis, 2019, 2, 290-296.	16.1	1,056
46	Binderâ€Free Electrodes Derived from Interlayerâ€Expanded MoS ₂ Nanosheets on Carbon Cloth with a 3D Porous Structure for Lithium Storage. ChemElectroChem, 2019, 6, 2338-2343.	1.7	22
47	Critical Assessment of the Electrocatalytic Activity of Vanadium and Niobium Nitrides toward Dinitrogen Reduction to Ammonia. ACS Sustainable Chemistry and Engineering, 2019, 7, 6839-6850.	3.2	95
48	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	0.6	16
49	Evolution of Oxygen–Metal Electron Transfer and Metal Electronic States During Manganese Oxide Catalyzed Water Oxidation Revealed with Inâ€Situ Soft Xâ€Ray Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 3426-3432.	7.2	52
50	Separating the Effects of Experimental Noise from Inherent System Variability in Voltammetry: The [Fe(CN) ₆] ^{3–/4–} Process. Analytical Chemistry, 2019, 91, 1944-1953.	3.2	11
51	Highâ€Temperature Oneâ€Step Synthesis of Efficient Nanostructured Bismuth Vanadate Photoanodes for Water Oxidation. Energy Technology, 2019, 7, 1801052.	1.8	23
52	Silver Bismuth Sulfoiodide Solar Cells: Tuning Optoelectronic Properties by Sulfide Modification for Enhanced Photovoltaic Performance. Advanced Energy Materials, 2019, 9, 1803396.	10.2	100
53	Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts. Sustainable Energy and Fuels, 2018, 2, 1561-1573.	2.5	29
54	Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy and Environmental Science, 2018, 11, 1880-1889.	15.6	148

#	Article	IF	CITATIONS
55	Molecular Engineering of Zincâ€Porphyrin Sensitisers for pâ€Type Dyeâ€Sensitised Solar Cells. ChemPlusChem, 2018, 83, 711-720.	1.3	16
56	Electrolysis of Natural Waters Contaminated with Transitionâ€Metal Ions: Identification of A Metastable FePbâ€Based Oxygenâ€Evolution Catalyst Operating in Weakly Acidic Solutions. ChemPlusChem, 2018, 83, 704-710.	1.3	9
57	Spray deposition of AgBiS ₂ and Cu ₃ BiS ₃ thin films for photovoltaic applications. Journal of Materials Chemistry C, 2018, 6, 2483-2494.	2.7	48
58	Cooperative silanetriolate-carboxylate sensitiser anchoring for outstanding stability and improved performance of dye-sensitised photoelectrodes. Sustainable Energy and Fuels, 2018, 2, 1707-1718.	2.5	8
59	Use of Bayesian Inference for Parameter Recovery in DC and AC Voltammetry. ChemElectroChem, 2018, 5, 917-935.	1.7	26
60	Probing Electron Transfer in the Manganeseâ€Oxideâ€Forming MnxEFG Protein Complex using Fourier Transformed AC Voltammetry: Understanding the Oxidative Priming Effect. ChemElectroChem, 2018, 5, 872-876.	1.7	2
61	Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation:ÂA physical and chemical synergistic approach. Nano Energy, 2018, 53, 745-752.	8.2	29
62	Molecular Engineering of Zinc-Porphyrin Sensitisers for p-Type Dye-Sensitised Solar Cells. ChemPlusChem, 2018, 83, 547-547.	1.3	0
63	Leone Spiccia Memorial Issue. ChemPlusChem, 2018, 83, 548-553.	1.3	0
64	Fourier transformed alternating current voltammetry in electromaterials research: Direct visualisation of important underlying electron transfer processes. Current Opinion in Electrochemistry, 2018, 10, 72-81.	2.5	28
65	Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells. ACS Applied Energy Materials, 2018, 1, 4473-4478.	2.5	27
66	Vertically Aligned Interlayer Expanded MoS ₂ Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysis. Chemistry of Materials, 2017, 29, 3092-3099.	3.2	140
67	Modelling ac voltammetry with MECSim: facilitating simulation–experiment comparisons. Current Opinion in Electrochemistry, 2017, 1, 140-147.	2.5	39
68	Diammonium and Monoammonium Mixedâ€Organicâ€Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444.	10.2	121
69	Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data. Analytical Chemistry, 2017, 89, 1565-1573.	3.2	23
70	Origin of Photoelectrochemical Generation of Dihydrogen by a Dye-Sensitized Photocathode without an Intentionally Introduced Catalyst. Journal of Physical Chemistry C, 2017, 121, 25836-25846.	1.5	16
71	Tunable Biogenic Manganese Oxides. Chemistry - A European Journal, 2017, 23, 13482-13492.	1.7	8
72	Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1855-1859.	8.8	17

#	Article	IF	CITATIONS
73	Untangling Complex Redox Chemistry in Zeolitic Imidazolate Frameworks Using Fourier Transformed Alternating Current Voltammetry. Analytical Chemistry, 2017, 89, 10181-10187.	3.2	11
74	Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy and Environmental Science, 2017, 10, 2516-2520.	15.6	497
75	Biogenic Manganeseâ€Oxide Mineralization is Enhanced by an Oxidative Priming Mechanism for the Multiâ€Copper Oxidase, MnxEFG. Chemistry - A European Journal, 2017, 23, 1346-1352.	1.7	12
76	Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17). Molecular and Cellular Endocrinology, 2017, 441, 62-67.	1.6	4
77	Limitations in Electrochemical Determination of Mass-Transport Parameters: Implications for Quantification of Electrode Kinetics Using Data Optimisation Methods. Australian Journal of Chemistry, 2017, 70, 990.	0.5	4
78	Robust Subâ€Monolayers of Co ₃ O ₄ Nanoâ€Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	10.2	44
79	Multiparameter Estimation in Voltammetry When an Electron Transfer Process Is Coupled to a Chemical Reaction. Analytical Chemistry, 2016, 88, 4724-4732.	3.2	16
80	Highly Dispersed Cobalt Oxide on TaON as Efficient Photoanodes for Long-Term Solar Water Splitting. ACS Catalysis, 2016, 6, 3404-3417.	5.5	63
81	Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst. Electrochimica Acta, 2016, 219, 773-780.	2.6	22
82	Solar Water Oxidation by Multicomponent TaON Photoanodes Functionalized with Nickel Oxide. ChemPlusChem, 2016, 81, 1107-1115.	1.3	3
83	Parameterization of Water Electrooxidation Catalyzed by Metal Oxides Using Fourier Transformed Alternating Current Voltammetry. Journal of the American Chemical Society, 2016, 138, 16095-16104.	6.6	48
84	Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution. Applied Physics Letters, 2016, 108, .	1.5	8
85	Photo-assisted electrodeposition of manganese oxide on TaON anodes: effect on water photooxidation capacity under visible light irradiation. Catalysis Science and Technology, 2016, 6, 3745-3757.	2.1	17
86	Optimization of Titania Postâ€Necking Treatment of TaON Photoanodes to Enhance Waterâ€Oxidation Activity under Visibleâ€Light Irradiation. ChemElectroChem, 2015, 2, 1270-1278.	1.7	17
87	Catalytic Activity and Impedance Behavior of Screenâ€Printed Nickel Oxide as Efficient Water Oxidation Catalysts. ChemSusChem, 2015, 8, 4266-4274.	3.6	20
88	Determination of diffusion coefficients from semiintegrated d.c. and a.c. voltammetric data: Overcoming the edge effect at macrodisc electrodes. Journal of Electroanalytical Chemistry, 2015, 744, 110-116.	1.9	7
89	Redox Levels of a <i>closo</i> -Osmaborane: A Density Functional Theory, Electron Paramagnetic Resonance and Electrochemical Study. Inorganic Chemistry, 2015, 54, 4292-4302.	1.9	6
90	An integrated instrumental and theoretical approach to quantitative electrode kinetic studies based on large amplitude Fourier transformed a.c. voltammetry: A mini review. Electrochemistry Communications, 2015, 57, 78-83.	2.3	66

AlexandrÂN Simonov

#	Article	IF	CITATIONS
91	On the Effect of Cu on the Activity of Carbon Supported Ni Nanoparticles for Hydrogen Electrode Reactions in Alkaline Medium. Topics in Catalysis, 2015, 58, 1181-1192.	1.3	48
92	Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14506-14511.	3.3	43
93	Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1). PLoS ONE, 2015, 10, e0141252.	1.1	28
94	New Insights into the Analysis of the Electrode Kinetics of Flavin Adenine Dinucleotide Redox Center of Glucose Oxidase Immobilized on Carbon Electrodes. Langmuir, 2014, 30, 3264-3273.	1.6	24
95	Potentiostatic electrodeposition of Pt on GC and on HOPG at low loadings: Analysis of the deposition transients and the structure of Pt deposits. Electrochimica Acta, 2014, 150, 279-289.	2.6	23
96	Expanded ring N-heterocyclic carbene adducts of group 15 element trichlorides: synthesis and reduction studies. Dalton Transactions, 2014, 43, 14858-14864.	1.6	21
97	Inappropriate Use of the Quasi-Reversible Electrode Kinetic Model in Simulation-Experiment Comparisons of Voltammetric Processes That Approach the Reversible Limit. Analytical Chemistry, 2014, 86, 8408-8417.	3.2	34
98	Interrelation between catalytic activity for oxygen electroreduction and structure of supported platinum. Journal of Electroanalytical Chemistry, 2014, 729, 34-42.	1.9	14
99	Studies on the Nuances of the Electrochemically Induced Room Temperature Isomerization of cis-Stilbene in Acetonitrile and Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 3183-3191.	1.2	11
100	The aperiodic current, and its semiintegral, in reversible a.c. voltammetry: Theory and experiment. Journal of Electroanalytical Chemistry, 2014, 719, 113-121.	1.9	11
101	Optimisation of windowing for harmonic recovery in large-amplitude Fourier transformed a.c. voltammetry. Journal of Electroanalytical Chemistry, 2014, 732, 86-92.	1.9	17
102	Catalytic Formation of Monosaccharides: From the Formose Reaction towards Selective Synthesis. ChemSusChem, 2014, 7, 1833-1846.	3.6	80
103	Aggregation of a Dibenzo[<i>b</i> , <i>def</i>]chrysene Based Organic Photovoltaic Material in Solution. Journal of Physical Chemistry B, 2014, 118, 6839-6849.	1.2	8
104	On choosing a reference redox system for electrochemical measurements: a cautionary tale. Journal of Solid State Electrochemistry, 2013, 17, 3021-3026.	1.2	10
105	A Comparison of Fully Automated Methods of Data Analysis and Computer Assisted Heuristic Methods in an Electrode Kinetic Study of the Pathologically Variable [Fe(CN) ₆] ^{3â€"/4â€"} Process by AC Voltammetry. Analytical Chemistry, 2013, 85, 11780-11787.	3.2	32
106	Kinetics of rapeseed oil transesterification over a heterogeneous barium-aluminum oxide catalyst with the methanol pressure taken into account. Catalysis in Industry, 2013, 5, 342-349.	0.3	0
107	Hydrogen electrooxidation on PdAu supported nanoparticles: An experimental RDE and kinetic modeling study. Catalysis Today, 2013, 202, 70-78.	2.2	18
108	The Observation of Dianions Generated by Electrochemical Reduction oftrans-Stilbenes in Ionic Liquids at Room Temperature. Analytical Chemistry, 2013, 85, 6113-6120.	3.2	15

#	ARTICLE	IF	CITATIONS
109	Electrodeposited Pd Sub-Monolayers on Carbon-Supported Au Particles of Few Nanometers in Size: Electrocatalytic Activity for Hydrogen Oxidation and CO Tolerance Vs. Pd Coverage. Electrocatalysis, 2012, 3, 119-131.	1.5	17
110	Formic acid electrooxidation over carbon-supported nanoparticles of non-stoichiometric palladium carbide. Journal of Power Sources, 2012, 217, 291-295.	4.0	5
111	Isopolytungstate Adsorption on Platinum: Manifestations of Underpotential Deposition. Electrocatalysis, 2012, 3, 230-237.	1.5	5
112	Performance of Ba-containing catalysts in the transesterification reaction of rapeseed oil with methanol under flow conditions. Catalysis Communications, 2012, 18, 156-160.	1.6	8
113	Transesterification of rapeseed oil under flow conditions catalyzed by basic solids: MAl(La)O (M=Sr,) Tj ETQq1 1	0.784314 2.2	rgßT /Over
114	Hydrogen electrooxidation over palladium–gold alloy: Effect of pretreatment in ethylene on catalytic activity and CO tolerance. Electrochimica Acta, 2012, 76, 344-353.	2.6	18
115	Enhanced catalytic activity for hydrogen electrooxidation and CO tolerance of carbon-supported non-stoichiometric palladium carbides. Journal of Molecular Catalysis A, 2012, 353-354, 204-214.	4.8	16
116	Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic―conditions. Advances in Space Research, 2011, 48, 441-449.	1.2	11
117	Selective Oxidation of Glucose Over Carbon-supported Pd and Pt Catalysts. Catalysis Letters, 2010, 140, 14-21.	1.4	40
118	Bismuth modified Pd/C as catalysts for hydrogen related reactions. Electrochemistry Communications, 2010, 12, 1490-1492.	2.3	17
119	Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochimica Acta, 2010, 55, 8453-8460.	2.6	50
120	Electrocorrosion properties of multiwall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2738-2742.	0.7	7
121	Catalytic condensation of glycolaldehyde and glyceraldehyde with formaldehyde in neutral and weakly alkaline aqueous media: Kinetics and mechanism. Kinetics and Catalysis, 2009, 50, 297-303.	0.3	22
122	Prebiotic Carbohydrates and Their Derivates. , 2008, , 103-117.		4
123	Possible prebiotic synthesis of monosaccharides from formaldehyde in presence of phosphates. Advances in Space Research, 2007, 40, 1634-1640.	1.2	28
124	The nature of autocatalysis in the Butlerov reaction. Kinetics and Catalysis, 2007, 48, 245-254.	0.3	32
125	Selective synthesis of erythrulose and 3-pentulose from formaldehyde and dihydroxyacetone catalyzed by phosphates in a neutral aqueous medium. Kinetics and Catalysis, 2007, 48, 550-555.	0.3	23
126	Study of the photoinduced formose reaction by flash and stationary photolysis. Mendeleev Communications, 2006, 16, 9-11.	0.6	14

#	Article	IF	CITATIONS
127	Putative mechanism of the sugar formation on prebiotic Earth initiated by UV-radiation. Advances in Space Research, 2005, 36, 214-219.	1.2	35
128	13C NMR studies of isomerization of D-glucose in an aqueous solution of Ca(OH)2. The effect of molecular oxygen. Russian Chemical Bulletin, 2005, 54, 1967-1972.	0.4	6
129	Vacuum compatible flowâ€cell for highâ€quality in situ and operando soft Xâ€ray photonâ€in–photonâ€out spectroelectrochemical studies of energy materials. Electrochemical Science Advances, 0, , .	1.2	4