
David Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	1.9	218
2	ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO. Bulletin of the American Meteorological Society, 2016, 97, 1885-1908.	1.7	124
3	Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 2016, 539, 416-419.	13.7	112
4	Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, 2016, 16, 15709-15740.	1.9	105
5	SO ₂ and BrO observation in the plume of the Eyjafjallaj¶kull volcano 2010: CARIBIC and GOME-2 retrievals. Atmospheric Chemistry and Physics, 2011, 11, 2973-2989.	1.9	67
6	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	1.9	64
7	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmospheric Chemistry and Physics, 2018, 18, 12817-12843.	1.9	54
8	Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument. Atmospheric Chemistry and Physics, 2008, 8, 6707-6717.	1.9	53
9	Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmospheric Chemistry and Physics, 2018, 18, 10055-10088.	1.9	52
10	Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmospheric Measurement Techniques, 2017, 10, 2837-2850.	1.2	44
11	Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season. Atmospheric Chemistry and Physics, 2016, 16, 14775-14794.	1.9	42
12	Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory. Atmospheric Chemistry and Physics, 2019, 19, 8425-8470.	1.9	41
13	Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry. Atmospheric Chemistry and Physics, 2019, 19, 11501-11523.	1.9	40
14	Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 2020, 20, 4757-4785.	1.9	40
15	Non-methane hydrocarbon (C ₂ –C ₈) sources and sinks around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2019, 19, 7209-7232.	1.9	35
16	Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics, 2018, 18, 6461-6482.	1.9	34
17	Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia. Atmospheric Chemistry and Physics, 2017, 17, 14365-14392.	1.9	33
18	Spectral Intensity Bioaerosol Sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time. Atmospheric Measurement Techniques, 2019, 12, 1337-1363.	1.2	33

DAVID WALTER

#	Article	IF	CITATIONS
19	Flux calculation using CARIBIC DOAS aircraft measurements: SO ₂ emission of Norilsk. Journal of Geophysical Research, 2012, 117, .	3.3	29
20	A new marine biogenic emission: methane sulfonamide (MSAM), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO ₂) measured in air over the Arabian Sea. Atmospheric Chemistry and Physics, 2020, 20, 6081-6094.	1.9	24
21	The Red Sea Deep Water is a potent source of atmospheric ethane and propane. Nature Communications, 2020, 11, 447.	5.8	24
22	Quantifying sources of Brazil's CH ₄ emissions between 2010 and 2018 from satellite data. Atmospheric Chemistry and Physics, 2020, 20, 13041-13067.	1.9	17
23	African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest. Atmospheric Chemistry and Physics, 2018, 18, 10391-10405.	1.9	16
24	Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 3469-3492.	1.9	16
25	Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017. Atmospheric Chemistry and Physics, 2022, 22, 5877-5924.	1.9	16
26	Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure. Atmospheric Chemistry and Physics, 2021, 21, 6231-6256.	1.9	15
27	Total OH Reactivity Changes Over the Amazon Rainforest During an El Niño Event. Frontiers in Forests and Global Change, 2018, 1, .	1.0	14
28	Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon. Atmospheric Measurement Techniques, 2020, 13, 153-164.	1.2	14
29	Bioaerosols in the Amazon rain forest: temporal variations and vertical profiles of Eukarya, Bacteria, and Archaea. Biogeosciences, 2021, 18, 4873-4887.	1.3	12
30	Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics, 2020, 20, 6583-6606.	1.9	11
31	Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe. Atmospheric Chemistry and Physics, 2022, 22, 8683-8699.	1.9	11
32	Microclimatic conditions and water content fluctuations experienced by epiphytic bryophytes in an Amazonian rain forest. Biogeosciences, 2020, 17, 5399-5416.	1.3	10
33	Intra-pixel variability in satellite tropospheric NO ₂ column densities derived from simultaneous space-borne and airborne observations over the South African Highveld. Atmospheric Measurement Techniques, 2018, 11, 2797-2819.	1.2	9
34	A case study of a gravity wave induced by Amazon forest orography and low level jet generation. Agricultural and Forest Meteorology, 2021, 307, 108457.	1.9	9
35	CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud. Atmospheric Chemistry and Physics, 2014, 14, 6621-6642.	1.9	8
36	The CO ₂ record at the Amazon Tall Tower Observatory: A new opportunity to study processes on seasonal and interâ€annual scales. Global Change Biology, 2022, 28, 588-611.	4.2	8

#	Article	IF	CITATIONS
37	Planetary Boundary Layer Height Modulates Aerosol—Water Vapor Interactions During Winter in the Megacity of Delhi. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035681.	1.2	4
38	Characterizing water vapour concentration dependence of commercial cavity ring-down spectrometers for continuous on-site atmospheric water vapour isotope measurements in the tropics. Atmospheric Measurement Techniques, 2021, 14, 1439-1455.	1.2	0