
Selina Wray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8647114/publications.pdf Version: 2024-02-01

SELINA W/DAV

#	Article	IF	CITATIONS
1	Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 318-338.	0.4	27
2	Disruption of ERâ€mitochondria tethering and signalling in <i>C9orf72</i> â€associated amyotrophic lateral sclerosis and frontotemporal dementia. Aging Cell, 2022, 21, e13549.	3.0	30
3	Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities. Frontiers in Neuroscience, 2022, 16, 835645.	1.4	10
4	Elevated 4Râ€ŧau in astrocytes from asymptomatic carriers of the <i>MAPT</i> 10+16 intronic mutation. Journal of Cellular and Molecular Medicine, 2022, 26, 1327-1331.	1.6	6
5	Modelling neurodegenerative disease using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 60-66.	2.3	25
6	The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles. Brain Communications, 2021, 3, fcab009.	1.5	7
7	Mass spectrometry analysis of tau and amyloidâ€beta in iPSCâ€derived models of Alzheimer's disease and dementia. Journal of Neurochemistry, 2021, 159, 305-317.	2.1	8
8	Plasma amyloid-β ratios in autosomal dominant Alzheimer's disease: the influence of genotype. Brain, 2021, 144, 2964-2970.	3.7	16
9	MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature, 2021, 594, 117-123.	13.7	29
10	The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports, 2021, 16, 1276-1289.	2.3	17
11	Genetically engineered MAPT 10+16 mutation causes pathophysiological excitability of human iPSC-derived neurons related to 4R tau-induced dementia. Cell Death and Disease, 2021, 12, 716.	2.7	11
12	Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Reports, 2021, 34, 108615.	2.9	53
13	Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells, 2021, 10, 2866.	1.8	6
14	Investigating changes in the proteostasis capabilities of iPSCâ€neurons during development and in FTD using iPSCâ€neurons with <i>MAPT</i> mutations. Alzheimer's and Dementia, 2021, 17, e058308.	0.4	1
15	Familial Alzheimer's disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Molecular Psychiatry, 2020, 25, 2919-2931.	4.1	99
16	Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Molecular and Cellular Neurosciences, 2020, 109, 103553.	1.0	19
17	Investigating proteostasis in development and disease using IPSCâ€neurons with MAPT mutations linked to FTD. Alzheimer's and Dementia, 2020, 16, e039336.	0.4	0
18	Premature neuronal differentiation in familial Alzheimer's disease human stem cells in vitro and in postmortem brain tissue. Alzheimer's and Dementia, 2020, 16, e039793.	0.4	0

#	Article	IF	CITATIONS
19	iPSCâ€derived engineered cerebral organoids (enCORs) as in vitro models of tauopathy. Alzheimer's and Dementia, 2020, 16, e039816.	0.4	0
20	Haploinsufficiency of progranulin causes impairments in PINK/PARKIN mitophagy. Alzheimer's and Dementia, 2020, 16, e042104.	0.4	0
21	Exploring the role of BIN1 in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042794.	0.4	0
22	Accelerated neuronal and synaptic maturation by BrainPhys medium increases AÎ ² secretion and alters AÎ ² peptide ratios from iPSC-derived cortical neurons. Scientific Reports, 2020, 10, 601.	1.6	26
23	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathologica, 2020, 139, 717-734.	3.9	15
24	Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia. Journal of Cell Science, 2020, 133, .	1.2	17
25	Amyloid precursor protein processing in human neurons with an allelic series of the PSEN1 intron 4 deletion mutation and total presenilin-1 knockout. Brain Communications, 2019, 1, fcz024.	1.5	13
26	SILK studies $\hat{a} \in$ " capturing the turnover of proteins linked to neurodegenerative diseases. Nature Reviews Neurology, 2019, 15, 419-427.	4.9	37
27	FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy, 2019, 15, 2002-2011.	4.3	57
28	Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports, 2019, 26, 582-593.e5.	2.9	119
29	Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons. Neuropharmacology, 2018, 135, 1-10.	2.0	17
30	Susceptibility of brain atrophy to <i>TRIB3</i> in Alzheimer's disease, evidence from functional prioritization in imaging genetics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3162-3167.	3.3	41
31	Amyloid β peptides are differentially vulnerable to preanalytical surface exposure, an effect incompletely mitigated by the use of ratios. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 311-321.	1.2	21
32	Gâ€quadruplexâ€binding small molecules ameliorate <i>C9orf72</i> <scp>FTD</scp> / <scp>ALS</scp> pathology <i>inÂvitro</i> and <i>inÂvivo</i> . EMBO Molecular Medicine, 2018, 10, 22-31.	3.3	178
33	P1â€188: MODELLING AMYLOID BETA PROFILES IN IPSCâ€DERIVED CORTICAL NEURONS OF MULTIPLE FAMILIAL ALZHEIMER'S DISEASE GENOTYPES, INCLUDING A CASE STUDY OF SAME DONOR CULTURE MEDIA, CSF AND BRAIN TISSUE. Alzheimer's and Dementia, 2018, 14, P350.	0.4	0
34	Conceptualising and Understanding Artistic Creativity in the Dementias: Interdisciplinary Approaches to Research and Practise. Frontiers in Psychology, 2018, 9, 1842.	1.1	27
35	Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology. Brain Research, 2018, 1701, 75-84.	1.1	25
36	A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathologica Communications, 2018, 6, 37.	2.4	44

#	Article	IF	CITATIONS
37	Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes. Stem Cell Reports, 2018, 11, 363-379.	2.3	43
38	Computational modelling of pathogenic protein spread in neurodegenerative diseases. PLoS ONE, 2018, 13, e0192518.	1.1	6
39	AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Scientific Reports, 2018, 8, 8855.	1.6	57
40	Monoaminergic neuropathology in Alzheimer's disease. Progress in Neurobiology, 2017, 151, 101-138.	2.8	206
41	Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron, 2017, 93, 1066-1081.e8.	3.8	204
42	Modeling tau pathology in human stem cell derived neurons. Brain Pathology, 2017, 27, 525-529.	2.1	11
43	The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	5.8	182
44	Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS. Cell Reports, 2017, 19, 1739-1749.	2.9	146
45	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
46	Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons. Journal of Biological Chemistry, 2017, 292, 8907-8917.	1.6	27
47	Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biology, 2017, 12, 410-422.	3.9	87
48	Protein Deimination in Protein Misfolding Disorders: Modeled in Human Induced Pluripotent Stem Cells (iPSCs). , 2017, , 227-239.		1
49	Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages. Scientific Reports, 2017, 7, 9003.	1.6	85
50	Effect of Spinal Manometers on Cerebrospinal Fluid Amyloid-β Concentration. Journal of Alzheimer's Disease, 2017, 56, 885-891.	1.2	6
51	[P1–219]: PROBING DEVELOPMENTAL CONSEQUENCES OF PSEN1 MUTATIONS IN IPSC DIFFERENTIATION IN 2 AND 3D. Alzheimer's and Dementia, 2017, 13, P327.	2D _{0.4}	0
52	[P1–220]: 3D CEREBRAL ORGANOIDS AS IN VITRO MODELS FOR ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P327.	0.4	0
53	[P1–025]: PROBING DEVELOPMENTAL CONSEQUENCES OF PSEN1 MUTATIONS IN IPSC DIFFERENTIATION IN 2 AND 3D. Alzheimer's and Dementia, 2017, 13, P242.	2D 0.4	0
54	[P1–180]: DISTINCT Aβ PRODUCTION IN STEM CELLâ€DERIVED CORTICAL NEURONS FROM PATIENTS WITH F MUTATION. Alzheimer's and Dementia, 2017, 13, P311.	AD 0.4	0

#	Article	IF	CITATIONS
55	iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. PLoS ONE, 2017, 12, e0184104.	1.1	39
56	Preparatory planning framework for Created Out of Mind: Shaping perceptions of dementia through art and science. Wellcome Open Research, 2017, 2, 108.	0.9	18
57	Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules, 2016, 6, 6.	1.8	503
58	Review: Induced pluripotent stem cell models of frontotemporal dementia. Neuropathology and Applied Neurobiology, 2016, 42, 497-520.	1.8	8
59	Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathology and Applied Neurobiology, 2016, 42, 220-241.	1.8	114
60	Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation. Scientific Reports, 2016, 6, 29200.	1.6	65
61	Neuronal activity enhances tau propagation and tau pathology in vivo. Nature Neuroscience, 2016, 19, 1085-1092.	7.1	569
62	Stem cell therapy for Alzheimer's disease: hope or hype?. Lancet Neurology, The, 2016, 15, 133-135.	4.9	16
63	Higher Mitochondrial Membrane Potential Induces ROS Production in the Familiar Form of Frontotemporal Dementia with MAPT Mutations. Biophysical Journal, 2015, 108, 611a.	0.2	4
64	Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Human Molecular Genetics, 2015, 24, 5260-5269.	1.4	116
65	Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion. Neurobiology of Aging, 2015, 36, 546.e1-546.e7.	1.5	48
66	C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurology, The, 2015, 14, 291-301.	4.9	270
67	Using human induced pluripotent stem cells to model cerebellar disease: Hope and hype. Journal of Neurogenetics, 2015, 29, 95-102.	0.6	10
68	Calpain cleavage and inactivation of the sodium calcium exchangerâ€3 occur downstream of <scp>A</scp> l² in <scp>A</scp> lzheimer's disease. Aging Cell, 2014, 13, 49-59.	3.0	38
69	The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 2013, 16, 1257-1265.	7.1	292
70	Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels. Neuron, 2013, 78, 57-64.	3.8	127
71	Comprehensive analysis of the <i>TRPV4</i> gene in a large series of inherited neuropathies and controls. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 1204-1209.	0.9	16
72	MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Human Molecular Genetics, 2012, 21, 4094-4103.	1.4	191

#	Article	IF	CITATIONS
73	Complement receptor 1 (CR1) and Alzheimer's disease. Immunobiology, 2012, 217, 244-250.	0.8	107
74	Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research. PLoS ONE, 2012, 7, e43099.	1.1	44
75	Globular glial tauopathies (GGT) presenting with motor neuron disease or frontotemporal dementia: an emerging group of 4-repeat tauopathies. Acta Neuropathologica, 2011, 122, 415-428.	3.9	67
76	A Tangled Web – Tau and Sporadic Parkinson's Disease. Frontiers in Psychiatry, 2010, 1, 150.	1.3	27
77	Tau cleavage and tau aggregation in neurodegenerative disease. Biochemical Society Transactions, 2010, 38, 1016-1020.	1.6	51
78	All MAPT out?: Well-travelled pathways into neurodegeneration. Biochemist, 2010, 32, 14-17.	0.2	0
79	Linking Amyloid and Tau Pathology in Alzheimer's Disease: The Role of Membrane Cholesterol in AÂ-Mediated Tau Toxicity. Journal of Neuroscience, 2009, 29, 9665-9667.	1.7	30
80	Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of Nâ€ŧerminally cleaved tau containing four microtubuleâ€binding repeats. Journal of Neurochemistry, 2008, 105, 2343-2352.	2.1	73
81	Phosphorylation Regulates Tau Interactions with Src Homology 3 Domains of Phosphatidylinositol 3-Kinase, Phospholipase Cl̂ ³ 1, Grb2, and Src Family Kinases. Journal of Biological Chemistry, 2008, 283, 18177-18186.	1.6	198
82	Novel Phosphorylation Sites in Tau from Alzheimer Brain Support a Role for Casein Kinase 1 in Disease Pathogenesis. Journal of Biological Chemistry, 2007, 282, 23645-23654.	1.6	387