
M Kottaisamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8646969/publications.pdf

Version: 2024-02-01

MKOTTAISAMY

#	Article	IF	CITATIONS
1	Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 2010, 81, 720-725.	10.2	532
2	Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 2011, 102, 1988-1997.	9.6	472
3	Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 2010, 77, 257-262.	5.0	469
4	A Novel Method for the Synthesis of Cellulose Nanofibril Whiskers from Banana Fibers and Characterization. Journal of Agricultural and Food Chemistry, 2008, 56, 5617-5627.	5.2	305
5	Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 2011, 86, 1790-1798.	10.2	304
6	Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Advances, 2014, 4, .	1.3	170
7	Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. Journal Physics D: Applied Physics, 2007, 40, 6312-6327.	2.8	147
8	Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs. Materials Research Bulletin, 2008, 43, 1657-1663.	5.2	125
9	Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Construction and Building Materials, 2018, 171, 350-356.	7.2	96
10	Eu2+luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+and Ba2+, and X is F-, Cl-, Br-and OH\$. Journal Physics D: Applied Physics, 1994, 27, 2210-2215.	2.8	93
11	Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties. Journal of Applied Physics, 2014, 115, .	2.5	79
12	Eu3+luminescence: A spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br-or OH-). Journal of Physics Condensed Matter, 1995, 7, 8453-8466.	1.8	78
13	Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete. Journal of Cleaner Production, 2019, 208, 402-414.	9.3	70
14	Yttrium oxide:Eu3+ red phosphor by self-propagating high temperature synthesis. Materials Research Bulletin, 1996, 31, 1013-1020.	5.2	66
15	Growth and Characterization of  Y 2 O 3 : Tm Thinâ€Film Blueâ€Emitting Phosphor. Jo Electrochemical Society, 1999, 146, 4320-4323.	ournal of t	:he ₄₂
16	White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite. Scripta Materialia, 2008, 59, 722-725.	5.2	36
17	Synthesis and Characterization of Fine Particle Y[sub 2]O[sub 2]S:Eu Red Phosphor at Low-Voltage Excitation. Journal of the Electrochemical Society, 2000, 147, 1612.	2.9	33
18	Luminescent properties of near UV excitable Ba2ZnS3 : Mn red emitting phosphor blend for white LED and display applications. Journal Physics D: Applied Physics, 2006, 39, 2701-2706.	2.8	31

M KOTTAISAMY

#	Article	IF	CITATIONS
19	Structural and luminescence properties of pulsed laser deposited green-emitting Zn2SiO4:Mn phosphor thin films. Scripta Materialia, 2007, 57, 433-436.	5.2	27
20	Defects Induced Enhancement ofEu3+Emission in Yttria (Y2O3:Eu3+). Japanese Journal of Applied Physics, 1994, 33, 6207-6212.	1.5	24
21	Agro-Based Biocomposites for Industrial Applications. Molecular Crystals and Liquid Crystals, 2010, 522, 18/[318]-27/[327].	0.9	24
22	Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Advances, 2015, 5, .	1.3	23
23	Divalent europium-activated alkaline-earth-metal chlorophosphate luminophores [M5(PO4)3Cl:Eu2+; M=Ca, Sr, Ba] by self-propagating high-temperature synthesis. Journal of Materials Chemistry, 1997, 7, 345-349.	6.7	22
24	Synthesis of the graphene-ZnTiO ₃ nanocomposite for solar light assisted photodegradation of methylene blue. Journal Physics D: Applied Physics, 2015, 48, 415305.	2.8	22
25	Improved Luminescence of Zn[sub 2]SiO[sub 4]:Mn Green Phosphor Prepared by Gel Combustion Synthesis of ZnO:Mn–SiO[sub 2]. Journal of the Electrochemical Society, 2007, 154, H297.	2.9	21
26	Pineapple Leaf Fibers for Composites and Cellulose. Molecular Crystals and Liquid Crystals, 2010, 522, 36/[336]-41/[341].	0.9	21
27	Properties of CdS films deposited by the electron beam evaporation technique. Journal of Alloys and Compounds, 2010, 503, 170-176.	5.5	21
28	Photoconductive studies on electron beam evaporated CdSe films. Physica B: Condensed Matter, 2009, 404, 2449-2454.	2.7	20
29	Synthesis of blue light excitable white light emitting ZnO for luminescent converted light emitting diodes (LUCOLEDs). Materials Letters, 2016, 165, 153-155.	2.6	20
30	Near UV excitable yellow light emitting Zn doped MgO for WLED application. Superlattices and Microstructures, 2017, 106, 174-183.	3.1	20
31	Yellow emitting Cd doped SnO2 nanophosphor for phosphor converted white LED applications. Materials Science in Semiconductor Processing, 2018, 85, 141-149.	4.0	20
32	Near UV excitable warm white light emitting Zn doped Î ³ -Ga2O3 nanoparticles for phosphor-converted white light emitting diode. Ceramics International, 2019, 45, 2079-2087.	4.8	19
33	A new red colour emitting phosphor – ZnS:Mn co-doped with Ba for electroluminescent (EL) displays. Displays, 2009, 30, 202-204.	3.7	16
34	Thin film luminescence of ZnGa2O4:Mn deposited by PLD. Scripta Materialia, 2006, 54, 237-240.	5.2	14
35	Development of Nano-composite Coating for Silicon Solar Cell Efficiency Improvement*. Materials Today: Proceedings, 2018, 5, 1759-1765.	1.8	14
36	UV excitable Y2â^'xâ^'y Gd y SiO5:Ce x phosphors for cool white light emission. Applied Physics A: Materials Science and Processing, 2009, 94, 607-612.	2.3	13

M KOTTAISAMY

#	Article	IF	CITATIONS
37	Cellulose Nanocomposites for High-Performance Applications. , 2011, , 539-587.		13
38	Dynamic quenching study of 2-amino-3-bromo-1,4-naphthoquinone by titanium dioxide nano particles in solution (methanol). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 272-276.	3.9	13
39	ZnO:Al – A yellowish orange emitting phosphor for Blue Light -Converted White Light Emitting Diode (WLEDs). Ceramics International, 2018, 44, 14518-14522.	4.8	13
40	Sol–gel derived flux assisted synthesis of fine particles YAG:Ce3+ phosphor for remote phosphor converted white light emitting diodes. Materials Research Bulletin, 2016, 74, 485-490.	5.2	12
41	Influence of Preparation Conditions on the Structural and Luminescent Properties of Blue-Emitting SrGa[sub 2]S[sub 4]:Ce Thin-Film Phosphors. Journal of the Electrochemical Society, 2002, 149, H165.	2.9	10
42	Low temperature synthesis of SrS:Ce phosphor by carbothermal reduction method: Influence of sulfur and charge compensator on the luminescent properties. Materials Research Bulletin, 2007, 42, 753-761.	5.2	10
43	Blue light excitable red emitting ZnO and its blend for high CRI white light emitting diodes applications. Journal of Luminescence, 2022, 241, 118447.	3.1	9
44	SrS:Ce/ZnS:Mn-A di-band phosphor for near-UV and blue LED-converted white-light emitting diodes. Journal of Luminescence, 2009, 129, 991-995.	3.1	8
45	Low voltage cathode-luminescent properties of Zn co-doped Y 2 O 3 :Eu red phosphor. Journal of Luminescence, 2016, 177, 249-253.	3.1	8
46	Luminescent Solar Concentrators – The Solar Waveguides. Current Science, 2018, 114, 1656.	0.8	8
47	Study of pulsed laser deposited ZnGa ₂ O ₄ : Mn phosphor thin films in an oxygen controlled environment. Journal Physics D: Applied Physics, 2009, 42, 155301.	2.8	6
48	Yellow and warm white light emitting Zn doped Y2O3 for near UV excitable phosphor converted WLED. Journal of Materials Science: Materials in Electronics, 2018, 29, 19724-19731.	2.2	5
49	FORMATION OF ZnO NANOBRUSHES IN DIRECT ATMOSPHERE USING A CARBON CATALYST AND A Zn METAL SOURCE. Nano, 2008, 03, 361-365.	1.0	4
50	Structural, optical and photoconductive properties of electron beam evaporated CdS _x Se _{1â€x} films. Crystal Research and Technology, 2010, 45, 414-420.	1.3	4
51	A Comparative Study of the Adsorption Efficiency of the Newly Synthetic Nano Iron Oxide and Commercial Activated Charcoal Towards the Removal of the Nickel(II) Ions. E-Journal of Chemistry, 2012, 9, 2384-2393.	0.5	4
52	Durability of Ultra High Strength Concrete with Waste Granite Sand as Partial Substitute for Aggregate. Journal of Computational and Theoretical Nanoscience, 2018, 15, 446-452.	0.4	4
53	Luminescence of Bi3+ in boron rich La2O3î—,CaOî—,B2O3 (glass and crystalline) ternary system. Materials Research Bulletin, 1991, 26, 481-486.	5.2	3
54	Green light emitting Zn doped β-Ga2O3 nanophosphor. AlP Conference Proceedings, 2017, , .	0.4	3

M KOTTAISAMY

#	Article	IF	CITATIONS
55	Investigation of thermal performance of a copper heat pipe with TiO <inf>2</inf> nanoparticles. , 2013, ,		2
56	Effect of Annealing Temperature on Band Gap of ZnO and Carbon Doped ZnO Thin Films. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 24-27.	0.5	2
57	Influence of Preparation Conditions on the Structural and Luminescent Properties of Blue-Emitting SrGa2S4:Ce Thin-Film Phosphors ChemInform, 2003, 34, no.	0.0	0
58	Synthesis of Zn-doped Y/sub 2/O/sub 3/: Eu fine particle phosphor by sol-gel method. , 0, , .		0
59	Synthesis and Formation Mechanism of ZnO Nanobrushes. , 2010, , .		0
60	Atomic Absorption Spectral Studies on the Removal of Lead (II) Ion by Using Synthetic Nano and Macro Fe ₃ O ₄ . Advanced Materials Research, 0, 584, 173-177.	0.3	0
61	Effective Removal of Nickel(II) Ion by Using Nano Fe ₃ O ₄ . Advanced Materials Research, 2013, 678, 7-11.	0.3	0
62	Synthesis and Characterization of ZnO-Based Phosphors and Related Phosphor Composites in Bulk, Thin Film and Nano Form. Springer Series in Materials Science, 2014, , 247-268.	0.6	0