Antonio JuÃ;rez-Maldonado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8646407/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of carbon-based nanomaterials on Fusarium wilt in tomato. Scientia Horticulturae, 2022, 291, 110586.	1.7	6
2	Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environmental Science and Pollution Research, 2022, 29, 34147-34163.	2.7	22
3	Argemone mexicana contiene metabolitos secundarios que controlan hongos fitopatógenos. BoletÃn De Ciencias Agropecuarias Del ICAP, 2022, 8, 6-10.	0.2	0
4	Stimulatory role of nanomaterials on agricultural crops. , 2022, , 219-246.		1
5	Effect of Chitosan-Poly(Acrylic Acid) Complexes and Two Nutrient Solutions on the Growth and Yield of Two Habanero Pepper Cultivars. Horticulturae, 2022, 8, 201.	1.2	3
6	Plantas medicinales de la familia Asteraceae con actividad hipoglucemiante en México. Una revisión. BoletÃn De Ciencias Agropecuarias Del ICAP, 2022, 8, 14-17.	0.2	0
7	Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage. Horticulturae, 2022, 8, 648.	1.2	13
8	Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Frontiers in Genetics, 2021, 12, 583888.	1.1	45
9	Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop. Nanomaterials, 2021, 11, 1080.	1.9	13
10	Nitric oxide modified growth, nutrient uptake and the antioxidant defense system in tomato seedlings stressed with arsenic. Theoretical and Experimental Plant Physiology, 2021, 33, 205-223.	1.1	9
11	Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. Journal of Advanced Research, 2021, 31, 113-126.	4.4	69
12	Improving the Berry Quality and Antioxidant Potential of Flame Seedless Grapes by Foliar Application of Chitosan–Phenylalanine Nanocomposites (CS–Phe NCs). Nanomaterials, 2021, 11, 2287.	1.9	10
13	Effect of Three Nanoparticles (Se, Si and Cu) on the Bioactive Compounds of Bell Pepper Fruits under Saline Stress. Plants, 2021, 10, 217.	1.6	48
14	Silicon Nanoparticles Improve the Shelf Life and Antioxidant Status of Lilium. Plants, 2021, 10, 2338.	1.6	11
15	Exogenous Application of Proline and L-Cysteine Alleviates Internal Browning and Maintains Eating Quality of Cold Stored Flat â€~Maleki' Peach Fruits. Horticulturae, 2021, 7, 469.	1.2	10
16	Effect of Graft and Nano ZnO on Nutraceutical and Mineral Content in Bell Pepper. Plants, 2021, 10, 2793.	1.6	14
17	Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil. Journal of Soil Science and Plant Nutrition, 2020, 20, 673-683.	1.7	8
18	Form of Silica Improves Yield, Fruit Quality and Antioxidant Defense System of Tomato Plants under Salt Stress. Agriculture (Switzerland), 2020, 10, 367.	1.4	39

#	Article	IF	CITATIONS
19	The ecology of nanomaterials in agroecosystems. , 2020, , 313-355.		3
20	Seed Priming with Carbon Nanomaterials to Modify the Germination, Growth, and Antioxidant Status of Tomato Seedlings. Agronomy, 2020, 10, 639.	1.3	29
21	Importance of nanofertilizers in fruit nutrition. , 2020, , 497-508.		6
22	Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter. Agriculture (Switzerland), 2020, 10, 97.	1.4	10
23	Comparison of Iodide, Iodate, and Iodine-Chitosan Complexes for the Biofortification of Lettuce. Applied Sciences (Switzerland), 2020, 10, 2378.	1.3	10
24	Nanoparticles in plants: morphophysiological, biochemical, and molecular responses. , 2020, , 289-322.		12
25	From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants. Molecules, 2019, 24, 2282.	1.7	71
26	Se Nanoparticles Induce Changes in the Growth, Antioxidant Responses, and Fruit Quality of Tomato Developed under NaCl Stress. Molecules, 2019, 24, 3030.	1.7	90
27	Impact of Selenium and Copper Nanoparticles on Yield, Antioxidant System, and Fruit Quality of Tomato Plants. Plants, 2019, 8, 355.	1.6	105
28	Nanoparticles and Nanomaterials as Plant Biostimulants. International Journal of Molecular Sciences, 2019, 20, 162.	1.8	143
29	Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles. Plants, 2019, 8, 151.	1.6	125
30	The Application of Selenium and Copper Nanoparticles Modifies the Biochemical Responses of Tomato Plants under Stress by Alternaria solani. International Journal of Molecular Sciences, 2019, 20, 1950.	1.8	98
31	Impact of Silicon Nanoparticles on the Antioxidant Compounds of Tomato Fruits Stressed by Arsenic. Foods, 2019, 8, 612.	1.9	25
32	Impact of Carbon Nanomaterials on the Antioxidant System of Tomato Seedlings. International Journal of Molecular Sciences, 2019, 20, 5858.	1.8	44
33	A contextualized approach for segmentation of foliage in different crop species. Computers and Electronics in Agriculture, 2019, 156, 378-386.	3.7	36
34	The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 2019, 245, 82-89.	1.7	67
35	lodine Biofortification of Crops. Concepts and Strategies in Plant Sciences, 2019, , 79-113.	0.6	5
36	Dynamic modeling of cucumber crop growth and uptake of N, P and K under greenhouse conditions. Scientia Horticulturae, 2018, 234, 250-260.	1.7	29

#	Article	IF	CITATIONS
37	Foliar Application of Cu Nanoparticles Modified the Content of Bioactive Compounds in Moringa oleifera Lam. Agronomy, 2018, 8, 167.	1.3	22
38	Chitosan-PVA and Copper Nanoparticles Improve Growth and Overexpress the SOD and JA Genes in Tomato Plants under Salt Stress. Agronomy, 2018, 8, 175.	1.3	86
39	Foliar Application of Copper Nanoparticles Increases the Fruit Quality and the Content of Bioactive Compounds in Tomatoes. Applied Sciences (Switzerland), 2018, 8, 1020.	1.3	158
40	Dynamic Modeling of Silicon Bioavailability, Uptake, Transport, and Accumulation: Applicability in Improving the Nutritional Quality of Tomato. Frontiers in Plant Science, 2018, 9, 647.	1.7	19
41	Tolerance-Induction Techniques and Agronomical Practices to Mitigate Stress in Extensive Crops and Vegetables. , 2018, , .		1
42	Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules, 2018, 23, 178.	1.7	102
43	Application of nanoelements in plant nutrition and its impact in ecosystems. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 013001.	0.7	110
44	Macro-nutrient uptake dynamics in greenhouse tomato crop. Journal of Plant Nutrition, 2017, 40, 1908-1919.	0.9	8
45	Anion Proportion in the Nutrient Solution Impacts the Growth and Nutrient Status of Anthurium (Anthurium andraeanum Linden ex. André.). Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1585-1592.	0.5	0
46	Selenium and Sulfur to Produce Allium Functional Crops. Molecules, 2017, 22, 558.	1.7	64
47	Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper. Molecules, 2017, 22, 926.	1.7	50
48	Determination of Micronutrient Accumulation in Greenhouse Cucumber Crop Using a Modeling Approach. Agronomy, 2017, 7, 79.	1.3	10
49	Postharvest Behavior of Bioactive Compounds in Tomato Fruits Treated with Cu Nanoparticles and NaCl Stress. Applied Sciences (Switzerland), 2017, 7, 980.	1.3	34
50	Use of lodine to Biofortify and Promote Growth and Stress Tolerance in Crops. Frontiers in Plant Science, 2016, 7, 1146.	1.7	123
51	Dynamic modeling of mineral contents in greenhouse tomato crop. Agricultural Sciences, 2014, 05, 114-123.	0.2	7

 $_{52}$ Efecto de los \tilde{A}_i cidos fen \tilde{A}^3 licos en el sistema antioxidante de plantas de tomate (Solanum lycopersicum) Tj ETQq0 0 0 rgBT / Overlock 1