Paul Montgomery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8646125/publications.pdf

Version: 2024-02-01

1163117 1199594 13 230 8 12 citations h-index g-index papers 14 14 14 158 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatially Resolved Optical Characterization of Functional Materials Using Coherence Scanning Interferometry. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000683.	1.8	O
2	Coherence scanning interferometry allows accurate characterization of micrometric spherical particles contained in complex media. Ultramicroscopy, 2020, 208, 112859.	1.9	4
3	High Resolution Surface Metrology Using Microsphereâ€Assisted Interference Microscopy. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800761.	1.8	11
4	High Resolution Microsphereâ€Assisted Interference Microscopy for 3D Characterization of Nanomaterials. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700858.	1.8	16
5	Local inspection of refractive index and thickness of thick transparent layers using spectral reflectance measurements in low coherence scanning interferometry. Optical Materials, 2018, 86, 100-105.	3.6	6
6	3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry. Scientific Reports, 2017, 7, 3683.	3.3	67
7	Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography. Optics Express, 2017, 25, 20216.	3.4	11
8	Microsphere-assisted phase-shifting profilometry. Applied Optics, 2017, 56, 7249.	1.8	33
9	Spatiallyâ€Resolved Spectroscopic Characterization of Reflective and Transparent Materials at a Microâ€Meter Scale Using Coherence Scanning Interferometry. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, .	0.8	4
10	Emerging optical nanoscopy techniques. Nanotechnology, Science and Applications, 2015, 8, 31.	4.6	17
11	Far field optical nanoscopy: How far can you go in nanometric characterization without resolving all the details?. Applied Surface Science, 2013, 281, 89-95.	6.1	6
12	White Light Scanning Interferometry Adapted for Large-Area Optical Analysis of Thick and Rough Hydroxyapatite Layers. Langmuir, 2007, 23, 3912-3918.	3.5	42
13	Deep submicron 3D surface metrology for 300 mm wafer characterization using UV coherence microscopy. Microelectronic Engineering, 1999, 45, 291-297.	2.4	13