Raymond Jianxiong Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8646097/publications.pdf

Version: 2024-02-01

200 papers

7,542 citations

45 h-index 71 g-index

200 all docs

200 docs citations

200 times ranked

6387 citing authors

#	Article	IF	CITATIONS
1	Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase $\hat{a} \in \mathbb{C}^m$ Investigation on dissolved organic matter transformation and microbial community shift. Water Research, 2017, 112, 261-268.	5.3	237
2	Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 2017, 111, 204-212.	5.3	219
3	Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. Journal of Hazardous Materials, 2020, 384, 121271.	6.5	180
4	Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water Research, 2018, 134, 54-62.	5.3	175
5	Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresource Technology, 2013, 134, 341-346.	4.8	172
6	Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Research, 2013, 47, 6122-6129.	5.3	164
7	Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology, 2017, 246, 224-233.	4.8	160
8	Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example. Journal of Hazardous Materials, 2017, 333, 275-284.	6.5	144
9	Anode potentials regulate Geobacter biofilms: New insights from the composition and spatial structure of extracellular polymeric substances. Water Research, 2019, 159, 294-301.	5.3	123
10	Syntrophic growth with direct interspecies electron transfer between pili-free <i>Geobacter</i> species. ISME Journal, 2018, 12, 2142-2151.	4.4	104
11	Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiology Reports, 2011, 3, 315-319.	1.0	103
12	Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors and Bioelectronics, 2017, 97, 369-376.	5.3	103
13	Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B: Environmental, 2019, 257, 117916.	10.8	102
14	Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 2019, 164, 114935.	5.3	95
15	Applying rheological analysis to better understand the mechanism of acid conditioning on activated sludge dewatering. Water Research, 2017, 122, 398-406.	5.3	92
16	Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresource Technology, 2014, 152, 241-246.	4.8	90
17	Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. Bioresource Technology, 2019, 271, 439-448.	4.8	88
18	Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Research, 2017, 110, 112-119.	5.3	86

#	Article	IF	CITATIONS
19	Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Applied Microbiology and Biotechnology, 2014, 98, 10211-10221.	1.7	83
20	Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Research, 2016, 102, 445-452.	5. 3	80
21	Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles. Biosensors and Bioelectronics, 2018, 108, 20-26.	5. 3	80
22	Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Research, 2015, 81, 294-300.	5. 3	78
23	Degradation of Tetrabromobisphenol A by Sulfidated Nanoscale Zerovalent Iron in a Dynamic Two-Step Anoxic/Oxic Process. Environmental Science & Enviro	4.6	75
24	Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. Journal of Membrane Science, 2012, 417-418, 28-33.	4.1	74
25	Iron reduction in the DAMO/ Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Research, 2016, 88, 808-815.	5. 3	74
26	Design and evaluation of universal 16S rRNA gene primers for high-throughput sequencing to simultaneously detect DAMO microbes and anammox bacteria. Water Research, 2015, 87, 385-394.	5. 3	68
27	Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(VI) removal. Chemical Engineering Journal, 2019, 362, 21-29.	6.6	66
28	Electrochemical and spectroscopic insights into the mechanisms of bidirectional microbe-electrode electron transfer in Geobacter soli biofilms. Electrochemistry Communications, 2017, 77, 93-97.	2.3	65
29	Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design—A review. Bioresource Technology, 2018, 269, 503-512.	4.8	65
30	Microbial electrochemical sensor for water biotoxicity monitoring. Chemical Engineering Journal, 2021, 404, 127053.	6.6	65
31	Anode potential-dependent protection of electroactive biofilms against metal ion shock via regulating extracellular polymeric substances. Water Research, 2020, 178, 115845.	5. 3	63
32	Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches. Biotechnology and Bioengineering, 2011, 108, 345-353.	1.7	58
33	Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor. Applied Microbiology and Biotechnology, 2017, 101, 437-446.	1.7	58
34	Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide. Bioresource Technology, 2020, 295, 122266.	4.8	57
35	Free acetic acid as the key factor for the inhibition of hydrogenotrophic methanogenesis in mesophilic mixed culture fermentation. Bioresource Technology, 2018, 264, 17-23.	4.8	55
36	Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process. Science of the Total Environment, 2018, 643, 1065-1073.	3.9	55

#	Article	IF	CITATIONS
37	Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. Journal of Cleaner Production, 2018, 202, 536-542.	4.6	54
38	In Situ Preparation of Stabilized Iron Sulfide Nanoparticle-Impregnated Alginate Composite for Selenite Remediation. Environmental Science & Eamp; Technology, 2018, 52, 6487-6496.	4.6	52
39	Novel Gas Diffusion Cloth Bioanodes for High-Performance Methane-Powered Microbial Fuel Cells. Environmental Science & Technology, 2019, 53, 530-538.	4.6	52
40	Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosensors and Bioelectronics, 2020, 150, 111922.	5.3	52
41	Hydrogen supersaturation in thermophilic mixed culture fermentation. International Journal of Hydrogen Energy, 2012, 37, 17809-17816.	3.8	51
42	Gas controlled hydrogen fermentation. Bioresource Technology, 2012, 110, 503-509.	4.8	50
43	High-purity propionate production from glycerol in mixed culture fermentation. Bioresource Technology, 2016, 219, 659-667.	4.8	49
44	Hollow fiber membrane bioreactor affects microbial community and morphology of the DAMO and Anammox co-culture system. Bioresource Technology, 2017, 232, 247-253.	4.8	48
45	Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading. Applied Energy, 2013, 103, 428-434.	5.1	47
46	New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches. Applied Microbiology and Biotechnology, 2015, 99, 9805-9812.	1.7	46
47	Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. Journal of Hazardous Materials, 2018, 344, 585-592.	6.5	46
48	Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3786-3791.	0.8	44
49	Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction. Science of the Total Environment, 2019, 688, 664-672.	3.9	44
50	High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. Journal of Hazardous Materials, 2020, 388, 121753.	6.5	44
51	Photochemical Behavior of Microbial Extracellular Polymeric Substances in the Aquatic Environment. Environmental Science & Environment. Environmental Science & Environment. Environmental Science & Environment. Environmental Science & Environment.	4.6	44
52	In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Applied Microbiology and Biotechnology, 2013, 97, 10233-10240.	1.7	43
53	A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnology and Bioengineering, 2013, 110, 1884-1894.	1.7	43
54	Characterization of anaerobic granular sludge using a rheological approach. Water Research, 2016, 106, 116-125.	5.3	43

#	Article	IF	CITATIONS
55	Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Applied Microbiology and Biotechnology, 2016, 100, 439-446.	1.7	43
56	Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere, 2017, 168, 293-299.	4.2	43
57	Fast Light-Driven Biodecolorization by a <i>Geobacter sulfurreducens</i> –CdS Biohybrid. ACS Sustainable Chemistry and Engineering, 2019, 7, 15427-15433.	3.2	43
58	Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Research, 2019, 159, 87-94.	5. 3	43
59	Mn ₃ O ₄ Nanozyme Coating Accelerates Nitrate Reduction and Decreases N ₂ O Emission during Photoelectrotrophic Denitrification by <i>Thiobacillus denitrificans</i> i>-CdS. Environmental Science & Denitrificans	4.6	43
60	Caproate production from xylose by mesophilic mixed culture fermentation. Bioresource Technology, 2020, 308, 123318.	4.8	43
61	Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Applied Energy, 2015, 158, 348-354.	5.1	42
62	Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process. Applied Microbiology and Biotechnology, 2017, 101, 3895-3906.	1.7	41
63	Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode. Energy Conversion and Management, 2020, 204, 112285.	4.4	41
64	Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Research, 2016, 17, 261-267.	2.4	40
65	Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzyme and Microbial Technology, 2016, 95, 236-241.	1.6	40
66	Light-driven carbon dioxide reduction to methane by <i>Methanosarcina barkeri</i> in an electric syntrophic coculture. ISME Journal, 2022, 16, 370-377.	4.4	40
67	Enhancement of acetate productivity in a thermophilic ($55\hat{A}\hat{A}^{\circ}C$) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Applied Microbiology and Biotechnology, 2017, 101, 2619-2627.	1.7	39
68	Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Water Research, 2020, 172, 115501.	5. 3	39
69	Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 ŰC) mixed culture fermentation. Applied Energy, 2015, 148, 326-333.	5.1	38
70	Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens. Scientific Reports, 2014, 4, 5268.	1.6	38
71	Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation. Applied Microbiology and Biotechnology, 2016, 100, 1511-1521.	1.7	38
72	Tracking the activity of the Anammox-DAMO process using excitation–emission matrix (EEM) fluorescence spectroscopy. Water Research, 2017, 122, 624-632.	5. 3	38

#	Article	lF	CITATIONS
7 3	Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor. Water Research, 2018, 130, 263-270.	5. 3	38
74	A rheological approach to analyze aerobic granular sludge. Water Research, 2014, 50, 171-178.	5. 3	37
75	Submersible probe type microbial electrochemical sensor for volatile fatty acids monitoring in the anaerobic digestion process. Journal of Cleaner Production, 2019, 232, 1371-1378.	4.6	37
76	Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. Water Research, 2019, 163, 114892.	5.3	36
77	Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Science of the Total Environment, 2019, 656, 140-149.	3.9	36
78	Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs. Biotechnology and Bioengineering, 2011, 108, 804-812.	1.7	35
79	H2 production by the thermoelectric microconverter coupled with microbial electrolysis cell. International Journal of Hydrogen Energy, 2016, 41, 22760-22768.	3.8	35
80	Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Advances, 2017, 7, 37382-37391.	1.7	35
81	Long solid retention time (SRT) has minor role in promoting methane production in a 65 °C single-stage anaerobic sludge digester. Bioresource Technology, 2018, 247, 724-729.	4.8	34
82	Impacts of medium composition and applied current on recovery of volatile fatty acids during coupling of electrodialysis with an anaerobic digester. Journal of Cleaner Production, 2019, 207, 483-489.	4.6	34
83	Production of chemicals in thermophilic mixed culture fermentation: mechanism and strategy. Critical Reviews in Environmental Science and Technology, 2020, 50, 1-30.	6.6	34
84	Efficient Photoelectron Capture by Ni Decoration in Methanosarcina barkeri-CdS Biohybrids for Enhanced Photocatalytic CO2-to-CH4 Conversion. IScience, 2020, 23, 101287.	1.9	34
85	In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment. Applied Microbiology and Biotechnology, 2016, 100, 6081-6089.	1.7	33
86	Biomimetic Regulation of Microbially Induced Calcium Carbonate Precipitation Involving Immobilization of <i>Sporasarcina pasteurii</i> by Sodium Alginate. Crystal Growth and Design, 2017, 17, 1854-1862.	1.4	33
87	Hydraulic retention time affects stable acetate production from tofu processing wastewater in extreme-thermophilic (70 °C) mixed culture fermentation. Bioresource Technology, 2016, 216, 722-728.	4.8	32
88	Valuable biochemical production in mixed culture fermentation: fundamentals and process coupling. Applied Microbiology and Biotechnology, 2017, 101, 6575-6586.	1.7	32
89	Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. Journal of Hazardous Materials, 2019, 364, 264-271.	6.5	32
90	Waste C1 Gases as Alternatives to Pure CO ₂ Improved the Microbial Electrosynthesis of C4 and C6 Carboxylates. ACS Sustainable Chemistry and Engineering, 2020, 8, 8773-8782.	3.2	32

#	Article	lF	Citations
91	The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes. Chemosphere, 2018, 198, 370-376.	4.2	30
92	Electricity from anaerobic methane oxidation by a single methanogenic archaeon Methanosarcina barkeri. Chemical Engineering Journal, 2021, 405, 126691.	6.6	30
93	Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. Chemosphere, 2021, 278, 130508.	4.2	30
94	Applying rheological analysis to understand the mechanism of polyacrylamide (PAM) conditioning for sewage sludge dewatering. RSC Advances, 2017, 7, 30274-30282.	1.7	29
95	Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process. Applied Microbiology and Biotechnology, 2016, 100, 4367-4374.	1.7	28
96	Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy and Fuels, 2017, 1, 891-898.	2.5	28
97	Electricity production and microbial characterization of thermophilic microbial fuel cells. Bioresource Technology, 2017, 243, 512-519.	4.8	27
98	Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. Journal of Cleaner Production, 2018, 187, 165-170.	4.6	27
99	Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum. Applied Microbiology and Biotechnology, 2018, 102, 5763-5773.	1.7	27
100	Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture. Science of the Total Environment, 2019, 651, 291-297.	3.9	27
101	Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation. Applied Energy, 2013, 109, 213-219.	5.1	26
102	FAMEs production from Scenedesmus obliquus in autotrophic, heterotrophic and mixotrophic cultures under different nitrogen conditions. Environmental Science: Water Research and Technology, 2018, 4, 461-468.	1.2	26
103	Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. Science of the Total Environment, 2021, 757, 143928.	3.9	26
104	The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes. Applied Microbiology and Biotechnology, 2015, 99, 7925-7936.	1.7	25
105	Homogeneous activation of peroxymonosulfate using a low-dosage cross-bridged cyclam manganese(II) complex for organic pollutant degradation via a nonradical pathway. Journal of Hazardous Materials, 2020, 394, 122560.	6.5	25
106	Metalâ€Free Semiconductorâ€Based Bioâ€Nano Hybrids for Sustainable CO ₂ â€toâ€CH ₄ Conversion with High Quantum Yield. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
107	Hydrogen and carbon dioxide mixed culture fermentation in a hollow-fiber membrane biofilm reactor at 25 °C. Bioresource Technology, 2018, 249, 659-665.	4.8	24
108	No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum. Bioresource Technology, 2019, 294, 122237.	4.8	24

#	Article	IF	Citations
109	High fatty acid productivity from Scenedesmus obliquus in heterotrophic cultivation with glucose and soybean processing wastewater via nitrogen and phosphorus regulation. Science of the Total Environment, 2020, 708, 134596.	3.9	24
110	A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. Science of the Total Environment, 2020, 741, 140198.	3.9	24
111	Comprehensive investigation of the relationship between organic content and waste activated sludge dewaterability. Journal of Hazardous Materials, 2020, 394, 122547.	6.5	24
112	Effects of Fe(II) on anammox community activity and physiologic response. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	23
113	Microbial Electrosynthesis for Producing Medium Chain Fatty Acids. Engineering, 2022, 16, 141-153.	3.2	23
114	Genome sequence of a dissimilatory Fe(III)-reducing bacterium Geobacter soli type strain GSS01T. Standards in Genomic Sciences, 2015, 10 , 118 .	1.5	22
115	Decolorization by Caldicellulosiruptor saccharolyticus with dissolved hydrogen under extreme thermophilic conditions. Chemical Engineering Journal, 2015, 262, 847-853.	6.6	22
116	Role of extracellular polymeric substances in efficient chromium(VI) removal by algae-based Fe/C nano-composite. Chemosphere, 2018, 211, 608-616.	4.2	22
117	Microbial selenite reduction coupled to anaerobic oxidation of methane. Science of the Total Environment, 2019, 669, 168-174.	3.9	22
118	Photoinduced water oxidation catalyzed by a double-helical dicobalt(<scp>ii</scp>) sexipyridine complex. Chemical Communications, 2014, 50, 14956-14959.	2.2	21
119	A Novel Approach for Phosphorus Recovery and No Wasted Sludge in Enhanced Biological Phosphorus Removal Process with External COD Addition. Applied Biochemistry and Biotechnology, 2014, 172, 820-828.	1.4	21
120	Decolorization of Acid Orange 7 by extreme-thermophilic mixed culture. Bioresource Technology, 2019, 291, 121875.	4.8	21
121	The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater. Bioresource Technology, 2020, 317, 124001.	4.8	21
122	Biophotoelectrochemistry for renewable energy and environmental applications. IScience, 2021, 24, 102828.	1.9	21
123	In-situ sludge pretreatment in a single-stage anaerobic digester. Bioresource Technology, 2017, 238, 102-108.	4.8	20
124	Power to hydrogen-oxidizing bacteria: Effect of current density on bacterial activity and community spectra. Journal of Cleaner Production, 2020, 263, 121596.	4.6	20
125	Bioelectrochemical Fixation of Nitrogen to Extracellular Ammonium by Pseudomonas stutzeri. Applied and Environmental Microbiology, 2021, 87, e0199820.	1.4	20
126	Effects of sewage sludge pretreatment methods on its use in agricultural applications. Journal of Hazardous Materials, 2022, 428, 128213.	6.5	20

#	Article	IF	Citations
127	Dissolved Organic Matter Acting as a Microbial Photosensitizer Drives Photoelectrotrophic Denitrification. Environmental Science & Environmental Scien	4.6	20
128	Bioelectrochemically enhanced degradation of bisphenol S: mechanistic insights from stable isotope-assisted investigations. IScience, 2021, 24, 102014.	1.9	19
129	Micro-microbial electrochemical sensor equipped with combined bioanode and biocathode for water biotoxicity monitoring. Bioresource Technology, 2021, 326, 124743.	4.8	19
130	Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer. Journal of Environmental Sciences, 2022, 115, 363-373.	3.2	19
131	Catalytic oxidation of alkanes by a (salen)osmium(<scp>vi</scp>) nitrido complex using H ₂ O ₂ as the terminal oxidant. Chemical Communications, 2015, 51, 13686-13689.	2.2	18
132	Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant. Scientific Reports, 2016, 6, 26115.	1.6	18
133	Transcriptomic, Proteomic, and Bioelectrochemical Characterization of an Exoelectrogen Geobacter soli Grown With Different Electron Acceptors. Frontiers in Microbiology, 2018, 9, 1075.	1.5	18
134	Hydrogen production from a thermophilic alkaline waste activated sludge fermenter: Effects of solid retention time (SRT). Chemosphere, 2018, 206, 101-106.	4.2	18
135	Effects of nitrate and water content on acetylene inhibition technique bias when analysing soil denitrification rates under an aerobic atmosphere. Geoderma, 2019, 334, 33-36.	2.3	17
136	Enhanced Methane Recovery from Waste-Activated Sludge by Alginate-Degrading Consortia: The Overlooked Role of Alginate in Extracellular Polymeric Substances. Environmental Science and Technology Letters, 2021, 8, 86-91.	3.9	17
137	Mixotrophic Cultivation of Microalgae Using Biogas as the Substrate. Environmental Science & Emp; Technology, 2022, 56, 3669-3677.	4.6	17
138	Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation. Bioresource Technology, 2022, 351, 126978.	4.8	17
139	Efficient production of medium chain fatty acids in microbial electrosynthesis with simultaneous bio-utilization of carbon dioxide and ethanol. Bioresource Technology, 2022, 352, 127101.	4.8	17
140	The chemostat study of metabolic distribution in extreme-thermophilic (70°C) mixed culture fermentation. Applied Microbiology and Biotechnology, 2014, 98, 10267-10273.	1.7	16
141	Design and characterization of a microbial self-healing gel for enhanced oil recovery. RSC Advances, 2017, 7, 2578-2586.	1.7	16
142	Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea. AMB Express, 2018, 8, 50.	1.4	16
143	Selective degradation of estrogens by a robust iron(III) complex bearing a cross-bridged cyclam ligand via iron(V)-oxo species. Chemical Engineering Journal, 2019, 378, 122223.	6.6	16
144	Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency. International Journal of Molecular Sciences, 2015, 16, 23355-23368.	1.8	15

#	Article	IF	Citations
145	Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum. Applied Microbiology and Biotechnology, 2016, 100, 6927-6934.	1.7	15
146	Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresource Technology, 2018, 267, 650-656.	4.8	15
147	Stimulation of methane production from benzoate with addition of carbon materials. Science of the Total Environment, 2020, 723, 138080.	3.9	15
148	Electricity production and microbial community in psychrophilic microbial fuel cells at 10°C. Bioresource Technology, 2020, 313, 123680.	4.8	15
149	Enrichment of hydrogen-oxidizing bacteria with nitrate recovery as biofertilizers in the mixed culture. Bioresource Technology, 2020, 313, 123645.	4.8	15
150	Identification of Extracellular Key Enzyme and Intracellular Metabolic Pathway in Alginate-Degrading Consortia via an Integrated Metaproteomic/Metagenomic Analysis. Environmental Science & Eamp; Technology, 2021, 55, 16636-16645.	4.6	15
151	Inhibitory effects of free propionic and butyric acids on the activities of hydrogenotrophic methanogens in mesophilic mixed culture fermentation. Bioresource Technology, 2019, 272, 458-464.	4.8	14
152	The indispensable role of assimilation in methane driven nitrate removal. Science of the Total Environment, 2020, 746, 141089.	3.9	14
153	Rechargeable microbial fuel cell based on bidirectional extracellular electron transfer. Bioresource Technology, 2021, 329, 124887.	4.8	14
154	Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	14
155	Complete genome sequence of the dissimilatory azo reducing thermophilic bacterium Novibacillus thermophiles SG-1. Journal of Biotechnology, 2018, 284, 6-10.	1.9	13
156	Application of iron-crosslinked sodium alginate for efficient sulfide control and reduction of oilfield produced water. Water Research, 2019, 154, 12-20.	5.3	13
157	Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis. Applied Microbiology and Biotechnology, 2016, 100, 6481-6490.	1.7	12
158	Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. Science of the Total Environment, 2019, 686, 869-877.	3.9	12
159	Elucidating the production and inhibition of melanoidins products on anaerobic digestion after thermal-alkaline pretreatment. Journal of Hazardous Materials, 2022, 424, 127377.	6.5	12
160	Understanding the Microbial Internal Storage Turnover in Wastewater Treatment: Retrospect, Prospect, and Challenge. Critical Reviews in Environmental Science and Technology, 2015, 45, 591-612.	6.6	11
161	Microbial dynamics of the extreme-thermophilic ($70\hat{A}\hat{A}^{\circ}C$) mixed culture for hydrogen production in a chemostat. International Journal of Hydrogen Energy, 2016, 41, 11072-11080.	3.8	11
162	Ammonium level induces high purity propionate production in mixed culture glucose fermentation. RSC Advances, 2017, 7, 518-525.	1.7	11

#	Article	lF	Citations
163	Low-level concentrations of aminoglycoside antibiotics induce the aggregation of cyanobacteria. Environmental Science and Pollution Research, 2018, 25, 17128-17136.	2.7	11
164	Nanoscale zero-valent iron-modified PVDF membrane prepared by a simple filter-press coating method can robustly remove 2-chlorophenol from wastewater. Chemical Engineering Journal, 2021, 416, 127701.	6.6	11
165	Effect of different phosphorus concentrations on biodiesel production from Isochrysis zhangjiangensis under nitrogen sufficiency or deprivation condition. Applied Microbiology and Biotechnology, 2019, 103, 5051-5059.	1.7	10
166	Highly Selective Fermentation of Waste-Activated Sludge by Alginate-Degrading Consortia. ACS ES&T Engineering, 2021, 1, 1606-1617.	3.7	10
167	A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosensors and Bioelectronics, 2021, 190, 113464.	5.3	10
168	Controlling volatile fatty acids production from waste activated sludge by an alginate-degrading consortium. Science of the Total Environment, 2022, 806, 150730.	3.9	10
169	Palladium nanoparticles produced and dispersed by Caldicellulosiruptor saccharolyticus enhance the degradation of contaminants in water. RSC Advances, 2015, 5, 15559-15565.	1.7	9
170	Nontemplating Porous Carbon Material from Polyphosphamide Resin for Supercapacitors. IScience, 2019, 12, 204-215.	1.9	9
171	Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans. Science of the Total Environment, 2020, 710, 136334.	3.9	9
172	Effect of inorganic carbon limitation on the conversion of organic carbon to total fatty acids by Monodus subterraneus. Science of the Total Environment, 2020, 737, 140275.	3.9	9
173	Experimental and numerical analysis of the hydrodynamic behaviors of aerobic granules. AICHE Journal, 2011, 57, 2909-2916.	1.8	8
174	The chemostat metabolite spectra of alkaline mixed culture fermentation under mesophilic, thermophilic, and extreme-thermophilic conditions. Bioresource Technology, 2018, 249, 322-327.	4.8	8
175	Two-stage enrichment of hydrogen-oxidizing bacteria as biofertilizers. Chemosphere, 2021, 266, 128932.	4.2	8
176	Acetate and electricity generation from methane in conductive fiber membrane- microbial fuel cells. Science of the Total Environment, 2022, 804, 150147.	3.9	8
177	Anthraquinone-2-Sulfonate as a Microbial Photosensitizer and Capacitor Drives Solar-to-N ₂ O Production with a Quantum Efficiency of Almost Unity. Environmental Science & Chrology, 2022, 56, 5161-5169.	4.6	8
178	Why is the ratio of H2/acetate over 2 in glucose fermentation by Caldicellulosiruptor saccharolyticus?. International Journal of Hydrogen Energy, 2013, 38, 11241-11247.	3.8	7
179	A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant. Environmental Science and Pollution Research, 2018, 25, 22810-22817.	2.7	7
180	Facile synthesis of compact CdS–CuS heterostructures for optimal CO ₂ -to-syngas photoconversion. Inorganic Chemistry Frontiers, 2022, 9, 2150-2160.	3.0	7

#	Article	IF	CITATIONS
181	Reinterpretation of the mechanism of coagulation and its effects in waste activated sludge treatment. Separation and Purification Technology, 2022, 291, 120958.	3.9	7
182	Evaluation of the effect of agitation speed on the growth and highâ€value LCâ€PUFA formation of <scp><i>Porphyridium cruentum</i></scp> based on basic rheological analysis. Journal of Chemical Technology and Biotechnology, 2019, 94, 2158-2166.	1.6	6
183	In situ prepared algae-supported iron sulfide to remove hexavalent chromium. Environmental Pollution, 2021, 274, 115831.	3.7	6
184	Supplementary In-Depth Analysis of the Waste Activated Sludge Dewatering Process Using a Rheological Analysis. ACS ES&T Engineering, 2021, 1, 289-297.	3.7	6
185	Decoupling mechanism of Acid Orange 7 decolorization and sulfate reduction by a Caldanaerobacter dominated extreme-thermophilic consortium. Journal of Hazardous Materials, 2021, 419, 126498.	6.5	6
186	Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors. Chemosphere, 2022, 286, 131725.	4.2	6
187	Flow-Electrode Microbial Electrosynthesis for Increasing Production Rates and Lowering Energy Consumption. Engineering, 2023, 25, 157-167.	3.2	6
188	Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4°C. Applied Microbiology and Biotechnology, 2022, 106, 4801-4811.	1.7	6
189	Evaluation of the after-effects of cyanobacterial cell removal and lysis by photocatalysis using Ag/AgBr/TiO2. Water Science and Technology, 2014, 70, 828-834.	1.2	5
190	Optimization of CO2 concentration and light intensity for biodiesel production by Chlorella vulgaris FACHB-1072 under nitrogen deficiency with phosphorus luxury uptake. Journal of Applied Phycology, 2014, 26, 1631-1638.	1.5	5
191	Evaluation of anaerobic ethane oxidation capability of the denitrifying anaerobic methane oxidation culture. Bioresource Technology Reports, 2020, 10, 100418.	1.5	5
192	A unified operating procedure is crucial to evaluate sludge dewaterability, taking the setup of refrigerated storage time as an example. Journal of Environmental Management, 2022, 307, 114528.	3.8	5
193	Metal nanoparticles increased the lag period and shaped the microbial community in slurry-electrode microbial electrosynthesis. Science of the Total Environment, 2022, 838, 156008.	3.9	5
194	Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60°C). Applied Microbiology and Biotechnology, 2016, 100, 5165-5176.	1.7	4
195	Functional Annotation of Caenorhabditis elegans Genes by Analysis of Gene Co-Expression Networks. Biomolecules, 2018, 8, 70.	1.8	4
196	Constraining nitrification by intermittent aeration to achieve methane-driven ammonia recovery of the mainstream anaerobic effluent. Journal of Environmental Management, 2021, 295, 113103.	3.8	4
197	Acid Orange 7 degradation using methane as the sole carbon source and electron donor. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	3
198	Successful, Combined Long-term Treatment of Cerebral Candidiasis and Aspergillosis in a Liver Transplant Recipient: A Case Report. Transplantation Proceedings, 2021, 53, 2588-2593.	0.3	3

#	Article	IF	CITATIONS
199	A rechargeable microbial electrochemical sensor for water biotoxicity monitoring. Biosensors and Bioelectronics: X, 2022, 10, 100132.	0.9	3
200	Sustained Biotic-Abiotic Hybrids Methanogenesis Enabled Using Metal-Free Black Phosphorus/Carbon Nitride. Frontiers in Microbiology, 0, 13, .	1.5	0