
Malwina TytÅ,a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8645548/publications.pdf

Version: 2024-02-01

Μαινμικά Τντά

#	Article	IF	CITATIONS
1	Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. International Journal of Environmental Research and Public Health, 2019, 16, 2430.	1.2	131
2	Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environmental Technology (United Kingdom), 2016, 37, 899-908.	1.2	61
3	Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir located in the key anthropogenic "hot spot―area (Poland). Environmental Earth Sciences, 2019, 78, 1.	1.3	28
4	ldentification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use. International Journal of Environmental Research and Public Health, 2020, 17, 4640.	1.2	26
5	The Effects of Ultrasonic Disintegration as a Function of Waste Activated Sludge Characteristics and Technical Conditions of Conducting the Process—Comprehensive Analysis. International Journal of Environmental Research and Public Health, 2018, 15, 2311.	1.2	20
6	First systematic review on PM-bound water: exploring the existing knowledge domain using the CiteSpace software. Scientometrics, 2020, 124, 1945-2008.	1.6	16
7	Seasonal variations of PM1-bound water concentration in urban areas in Poland. Atmospheric Pollution Research, 2019, 10, 267-273.	1.8	13
8	The effect of ultrasonic disintegration process conditions on the physicochemical characteristics of excess sludge. Archives of Environmental Protection, 2016, 42, 19-26.	1.1	10
9	Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. International Journal of Environmental Research and Public Health, 2020, 17, 5180.	1.2	8
10	Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different constructions. Environmental Technology (United Kingdom), 2015, 36, 2210-2216.	1.2	7
11	Heavy metals in municipal sewage sludge – a brief characteristic of potential threats and methods used to assess the ecological risk. Environment Earth and Ecology, 2021, 5, 18-25.	0.8	6
12	Ecological risk assessment of trace metals in the bottom sediments of the young water reservoir – Bardowskiego Lagoon (Warsaw) case study. E3S Web of Conferences, 2018, 44, 00182.	0.2	5
13	Strongly and Loosely Bound Water in Ambient Particulate Matter—Qualitative and Quantitative Determination by Karl Fischer Coulometric Method. Sustainability, 2020, 12, 6196.	1.6	4
14	The impact of temporal variability of excess sludge characteristics on the effects obtained in the process of its ultrasonic disintegration. Environmental Technology (United Kingdom), 2018, 39, 3020-3032.	1.2	3
15	Temporal and spatial variability in concentrations of phosphorus species under thermal pollution conditions of a dam reservoir – the Rybnik Reservoir case study. Archives of Environmental Protection, 2017, 43, 42-52.	1.1	2
16	Short review on PM-bound water. Its presence in the atmosphere, forms of occurrence and determination by Karl Fischer coulometric titration. E3S Web of Conferences, 2018, 44, 00187.	0.2	1
17	Integration of nanofIltration and reverse osmosis in desalination of mine water. , 2018, 128, 96-105.		1