
Nadia Benkirane-Jessel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8645497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vascularization of Patient-Derived Tumoroid from Non-Small-Cell Lung Cancer and Its Microenvironment. Biomedicines, 2022, 10, 1103.	1.4	6
2	Patient-Derived Lung Tumoroids—An Emerging Technology in Drug Development and Precision Medicine. Biomedicines, 2022, 10, 1677.	1.4	6
3	Control of Inflammation by a Thermosensitive Lovastatin-Loaded Hydrogel. Biomedical and Health Research, 2021, , .	0.0	0
4	Eruption of Bioengineered Teeth: A New Approach Based on a Polycaprolactone Biomembrane. Nanomaterials, 2021, 11, 1315.	1.9	2
5	Intelligent Implants for Osteoarthritis Injuries and Cartilage Regeneration. Biomedical and Health Research, 2021, , .	0.0	0
6	Mechanistic Illustration: How Newly-Formed Blood Vessels Stopped by the Mineral Blocks of Bone Substitutes Can Be Avoided by Using Innovative Combined Therapeutics. Biomedicines, 2021, 9, 952.	1.4	5
7	Nanomedicine and Periodontal Regenerative Treatment. Dental Clinics of North America, 2021, 66, 131-155.	0.8	2
8	Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. Journal of Tissue Engineering, 2021, 12, 204173142110414.	2.3	46
9	Comparative effectiveness of nonsurgical interventions in the treatment of patients with knee osteoarthritis. Medicine (United States), 2021, 100, e28067.	0.4	7
10	Potential Implantable Nanofibrous Biomaterials Combined with Stem Cells for Subchondral Bone Regeneration. Materials, 2020, 13, 3087.	1.3	7
11	A New Polycaprolactone-Based Biomembrane Functionalized with BMP-2 and Stem Cells Improves Maxillary Bone Regeneration. Nanomaterials, 2020, 10, 1774.	1.9	12
12	Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. International Journal of Pharmaceutics, 2020, 586, 119534.	2.6	23
13	Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102253.	1.7	14
14	Are the Immune Properties of Mesenchymal Stem Cells from Wharton's Jelly Maintained during Chondrogenic Differentiation?. Journal of Clinical Medicine, 2020, 9, 423.	1.0	13
15	Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Scientific Reports, 2020, 10, 1778.	1.6	19
16	The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma. Oncogene, 2019, 38, 60-72.	2.6	12
17	Bone Grafts, Bone Substitutes and Regenerative Medicine Acceptance for the Management of Bone Defects Among French Population: Issues about Ethics, Religion or Fear?. Cell Medicine, 2019, 11, 215517901985766.	5.0	22
18	Polymer-Based Instructive Scaffolds for Endodontic Regeneration. Materials, 2019, 12, 2347.	1.3	36

#	Article	IF	CITATIONS
19	Preclinical safety study of a combined therapeutic bone wound dressing for osteoarticular regeneration. Nature Communications, 2019, 10, 2156.	5.8	29
20	Semaphorin 3A receptor inhibitor as a novel therapeutic to promote innervation of bioengineered teeth. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e2151-e2161.	1.3	8
21	Mechanical stimulations on human bone marrow mesenchymal stem cells enhance cells differentiation in a threeâ€dimensional layered scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 360-369.	1.3	20
22	Cell Type Influences Local Delivery of Biomolecules from a Bioinspired Apatite Drug Delivery System. Materials, 2018, 11, 1703.	1.3	5
23	Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized <i>ε</i> -Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion. BioMed Research International, 2018, 2018, 1-12.	0.9	13
24	Temporomandibular Joint Regenerative Medicine. International Journal of Molecular Sciences, 2018, 19, 446.	1.8	40
25	Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study. Materials, 2018, 11, 580.	1.3	45
26	Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. Nanomaterials, 2018, 8, 337.	1.9	43
27	Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, 2018, 9, 204173141877681.	2.3	497
28	Smart Implants as a Novel Strategy to Regenerate Well-Founded Cartilage. Trends in Biotechnology, 2017, 35, 8-11.	4.9	15
29	Hybrid collagen sponge and stem cells as a new combined scaffold able to induce the re-organization of endothelial cells into clustered networks. Bio-Medical Materials and Engineering, 2017, 28, S185-S192.	0.4	4
30	Enhanced Peripheral Nerve Regeneration by a High Surface Area to Volume Ratio of Nerve Conduits Fabricated from Hydroxyethyl Cellulose/Soy Protein Composite Sponges. ACS Omega, 2017, 2, 7471-7481.	1.6	29
31	Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids. International Journal of Nanomedicine, 2017, Volume 12, 447-457.	3.3	18
32	Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization. Nanomedicine, 2016, 11, 2419-2430.	1.7	14
33	Integrating Microtissues in Nanofiber Scaffolds for Regenerative Nanomedicine. Materials, 2015, 8, 6863-6867.	1.3	5
34	Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration. Materials, 2015, 8, 7461-7471.	1.3	20
35	A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration. International Journal of Nanomedicine, 2015, 10, 1061.	3.3	28
36	Bone defects and future regenerative nanomedicine approach using stem cells in the mutant Tabby mouse model. Bio-Medical Materials and Engineering, 2015, 25, 111-119.	0.4	3

NADIA BENKIRANE-JESSEL

#	Article	IF	CITATIONS
37	Nanostructured thick 3D nanofibrous scaffold can induce bone. Bio-Medical Materials and Engineering, 2015, 25, 79-85.	0.4	10
38	Active implant combining human stem cell microtissues and growth factors for bone-regenerative nanomedicine. Nanomedicine, 2015, 10, 753-763.	1.7	30
39	Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine. Nanomedicine, 2015, 10, 2833-2845.	1.7	12
40	Bi-layered Nano Active Implant with Hybrid Stem Cell Microtissues for Tuned Cartilage Hypertrophy. Journal of Stem Cell Research & Therapeutics, 2015, 1, .	0.1	2
41	Collagen implants equipped with â€~fish scale'-like nanoreservoirs of growth factors for bone regeneration. Nanomedicine, 2014, 9, 1253-1261.	1.7	25
42	Osteogenetic Properties of Electrospun Nanofibrous PCL Scaffolds Equipped With Chitosan-Based Nanoreservoirs of Growth Factors. Macromolecular Bioscience, 2014, 14, 45-55.	2.1	62
43	Nanofibers Implant Functionalized by Neural Growth Factor as a Strategy to Innervate a Bioengineered Tooth. Advanced Healthcare Materials, 2014, 3, 386-391.	3.9	33
44	Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organization. Macromolecular Bioscience, 2014, 14, 1580-1589.	2.1	26
45	Electrospun nanofibrous 3D scaffold for bone tissue engineering. Bio-Medical Materials and Engineering, 2012, 22, 137-141.	0.4	29
46	Smart Hybrid Materials Equipped by Nanoreservoirs of Therapeutics. ACS Nano, 2012, 6, 483-490.	7.3	56
47	Structuring and Molding of Electrospun Nanofibers: Effect of Electrical and Topographical Local Properties of Microâ€Patterned Collectors. Macromolecular Materials and Engineering, 2012, 297, 958-968.	1.7	27
48	<i>In Vivo</i> Osseointegration of Nano-Designed Composite Coatings on Titanium Implants. ACS Nano, 2011, 5, 4790-4799.	7.3	81
49	Nanostructured Assemblies for Dental Application. ACS Nano, 2010, 4, 3277-3287.	7.3	52
50	Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter, 2010, 6, 5165.	1.2	42
51	Anti-fouling phosphorylcholine bearing polyelectrolyte multilayers: Cell adhesion resistance at rest and under stretching. Soft Matter, 2010, 6, 1503.	1.2	25
52	Stepâ€by‣tep Buildâ€Up of Biologically Active Cellâ€Containing Stratified Films Aimed at Tissue Engineering. Advanced Materials, 2009, 21, 650-655.	11.1	43
53	Polyelectrolyte Multilayer Films Built from Poly(l-lysine) and a Two-Component Anionic Polysaccharide Blend. Langmuir, 2009, 25, 3593-3600.	1.6	23
54	Polyelectrolyte multilayer coatings that resist protein adsorption at rest and under stretching. Journal of Materials Chemistry, 2008, 18, 4242.	6.7	30

NADIA BENKIRANE-JESSEL

#	Article	IF	CITATIONS
55	Transfection Ability and Intracellular DNA Pathway of Nanostructured Gene-Delivery Systems. Nano Letters, 2008, 8, 2432-2436.	4.5	50
56	Micro-stratified architectures based on successive stacking of alginate gel layers and poly(l-lysine)–hyaluronic acid multilayer films aimed at tissue engineering. Soft Matter, 2008, 4, 1422.	1.2	49
57	Bone Formation Mediated by Synergy-Acting Growth Factors Embedded in a Polyelectrolyte Multilayer Film. Advanced Materials, 2007, 19, 693-697.	11.1	89
58	Cell Apoptosis Control Using BMP4 and Noggin Embedded in a Polyelectrolyte Multilayer Film. Small, 2007, 3, 1577-1583.	5.2	35
59	Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8618-8621.	3.3	227
60	Short-Time Tuning of the Biological Activity of Functionalized Polyelectrolyte Multilayers. Advanced Functional Materials, 2005, 15, 648-654.	7.8	76
61	Build-up of Polypeptide Multilayer Coatings with Anti-Inflammatory Properties Based on the Embedding of Piroxicam–Cyclodextrin Complexes. Advanced Functional Materials, 2004, 14, 174-182.	7.8	122
62	Control of Monocyte Morphology on and Response to Model Surfaces for Implants Equipped with Anti-Inflammatory Agent. Advanced Materials, 2004, 16, 1507-1511.	11.1	79