Laura B Kozell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8645416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA‣eq Analysis of Genetic and Transcriptome Network Effects of Dualâ€Trait Selection for Ethanol Preference and Withdrawal Using SOT and NOT Genetic Models. Alcoholism: Clinical and Experimental Research, 2020, 44, 820-830.	2.4	9
2	Distinct Roles for Two Chromosome 1 Loci in Ethanol Withdrawal, Consumption, and Conditioned Place Preference. Frontiers in Genetics, 2018, 9, 323.	2.3	3
3	Limbic circuitry activation in ethanol withdrawal is regulated by a chromosome 1 locus. Alcohol, 2017, 58, 153-160.	1.7	5
4	G Proteinâ€Gated Inwardly Rectifying Potassium Channel Subunit 3 Knockâ€Out Mice Show Enhanced Ethanol Reward. Alcoholism: Clinical and Experimental Research, 2016, 40, 857-864.	2.4	20
5	A Systems Approach Implicates a Brain Mitochondrial Oxidative Homeostasis Co-expression Network in Genetic Vulnerability to Alcohol Withdrawal. Frontiers in Genetics, 2016, 7, 218.	2.3	9
6	Novel MPDZ/MUPP1 transgenic and knockdown models confirm <i>Mpdz</i> 's role in ethanol withdrawal and support its role in voluntary ethanol consumption. Addiction Biology, 2015, 20, 143-147.	2.6	26
7	Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models. , 2012, 34, 367-74.		8
8	Substantia nigra pars reticulata is crucially involved in barbiturate and ethanol withdrawal in mice. Behavioural Brain Research, 2011, 218, 152-157.	2.2	9
9	Mapping a Barbiturate Withdrawal Locus to a 0.44 Mb Interval and Analysis of a Novel Null Mutant Identify a Role for <i>Kcnj9</i> (GIRK3) in Withdrawal from Pentobarbital, Zolpidem, and Ethanol. Journal of Neuroscience, 2009, 29, 11662-11673.	3.6	53
10	Contribution of dopamine receptors to periaqueductal gray-mediated antinociception. Psychopharmacology, 2009, 204, 531-540.	3.1	79
11	Differential activation of limbic circuitry associated with chronic ethanol withdrawal in DBA/2J and C57BL/6J mice. Alcohol, 2009, 43, 411-420.	1.7	32
12	Mapping a locus for alcohol physical dependence and associated withdrawal to a 1.1 Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2â€23.3. Genes, Brain and Behavior, 2008, 7, 560-567.	2.2	18
13	Involvement of the Limbic Basal Ganglia in Ethanol Withdrawal Convulsivity in Mice Is Influenced by a Chromosome 4 Locus. Journal of Neuroscience, 2008, 28, 9840-9849.	3.6	20
14	Evaluation of Levodopa Dose and Magnitude of Dopamine Depletion as Risk Factors for Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 277-284.	2.5	70
15	Multiple conductances are modulated by 5-HT receptor subtypes in rat subthalamic nucleus neurons. Neuroscience, 2007, 148, 996-1003.	2.3	20
16	Lipoic acid downmodulates CD4 from human T lymphocytes by dissociation of p56Lck. Biochemical and Biophysical Research Communications, 2006, 344, 963-971.	2.1	17
17	Acute Alcohol Withdrawal is Associated with c-Fos Expression in the Basal Ganglia and Associated Circuitry: C57BL/6J and DBA/2J Inbred Mouse Strain Analyses. Alcoholism: Clinical and Experimental Research, 2005, 29, 1939-1948.	2.4	39
18	Biochemical Identification of the Dopamine D ₂ Receptor Domains Interacting With the Adenosine A _{2A} Receptor. Journal of Molecular Neuroscience, 2004, 24, 173-180.	2.3	43

Laura B Kozell

#	Article	IF	CITATIONS
19	Nerve terminal glutamate immunoreactivity in the rat nucleus accumbens and ventral tegmental area after a short withdrawal from cocaine. Synapse, 2004, 51, 224-232.	1.2	19
20	GENETIC CONTROL OF PHYSICAL DEPENDENCE AND WITHDRAWAL IN MICE Alcoholism: Clinical and Experimental Research, 2004, 28, 63A.	2.4	0
21	Regulation of Dopamine D1Receptor Trafficking by Protein Kinase A-Dependent Phosphorylation. Molecular Pharmacology, 2002, 61, 806-816.	2.3	49
22	The effects of acute or repeated cocaine administration on nerve terminal glutamate within the rat mesolimbic system. Neuroscience, 2001, 106, 15-25.	2.3	29
23	Dopamine D ₄ Receptor-Deficient Mice Display Cortical Hyperexcitability. Journal of Neuroscience, 2001, 21, 3756-3763.	3.6	125
24	Constitutive Activity of a Chimeric D ₂ /D ₁ Dopamine Receptor. Molecular Pharmacology, 1997, 52, 1137-1149.	2.3	58
25	Drugâ€Induced Upâ€Regulation of Dopamine D2 Receptors on Cultured Cells. Journal of Neurochemistry, 1995, 65, 569-577.	3.9	31
26	Enzymatic preparation of 3H-labeled β-ureidoisobutyric acid and β-aminoisobutyric acid from 3H-thymidine. Journal of Labelled Compounds and Radiopharmaceuticals, 1990, 28, 1417-1419.	1.0	0
27	The effects of L-tryptophan on haloperidol-induced movement disorder in the rat. Life Sciences, 1987, 41, 1739-1744.	4.3	29