
Dong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8645348/publications.pdf Version: 2024-02-01

DONG WU

#	Article	IF	CITATIONS
1	Relationships between Antibiotics and Antibiotic Resistance Gene Levels in Municipal Solid Waste Leachates in Shanghai, China. Environmental Science & Technology, 2015, 49, 4122-4128.	4.6	254
2	Antibiotic Resistance Genes and Associated Microbial Community Conditions in Aging Landfill Systems. Environmental Science & Technology, 2017, 51, 12859-12867.	4.6	154
3	Fluoroquinolones and β-lactam antibiotics and antibiotic resistance genes in autumn leachates of seven major municipal solid waste landfills in China. Environment International, 2018, 113, 162-169.	4.8	86
4	Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. Science of the Total Environment, 2021, 765, 142775.	3.9	74
5	Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar. Science of the Total Environment, 2022, 805, 150158.	3.9	71
6	(Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate. Environmental Science: Nano, 2020, 7, 3536-3546.	2.2	63
7	Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Research, 2019, 158, 11-21.	5.3	62
8	Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills. Journal of Hazardous Materials, 2021, 403, 123689.	6.5	52
9	Coupling ARB-based biological and photochemical (UV/TiO 2 and UV/S 2 O 8 2â^') techniques to deal with sanitary landfill leachate. Waste Management, 2017, 63, 292-298.	3.7	48
10	Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills. Environmental Pollution, 2019, 255, 113222.	3.7	42
11	Inhalable Antibiotic Resistome from Wastewater Treatment Plants to Urban Areas: Bacterial Hosts, Dissemination Risks, and Source Contributions. Environmental Science & Technology, 2022, 56, 7040-7051.	4.6	38
12	Change in microbial community in landfill refuse contaminated with antibiotics facilitates denitrification more than the increase in ARG over long-term. Scientific Reports, 2017, 7, 41230.	1.6	34
13	Fate of integrons, antibiotic resistance genes and associated microbial community in food waste and its large-scale biotreatment systems. Environment International, 2020, 144, 106013.	4.8	34
14	Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Environment International, 2018, 114, 143-151.	4.8	33
15	Insights into factors driving the transmission of antibiotic resistance from sludge compost-amended soil to vegetables under cadmium stress. Science of the Total Environment, 2020, 729, 138990.	3.9	30
16	Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies. Applied Microbiology and Biotechnology, 2015, 99, 7827-7836.	1.7	29
17	Occurrence, influence and removal strategies of mycotoxins, antibiotics and microplastics in anaerobic digestion treating food waste and co-digestive biosolids: A critical review. Bioresource Technology, 2021, 330, 124987.	4.8	28
18	Characteristics and risks of secondary pollutants generation during compression and transfer of municipal solid waste in Shanghai. Waste Management, 2015, 43, 1-8.	3.7	26

Dong Wu

#	Article	IF	CITATIONS
19	Metatranscriptomic insight into the effects of antibiotic exposure on performance during anaerobic co-digestion of food waste and sludge. Journal of Hazardous Materials, 2022, 423, 127163.	6.5	25
20	Airborne transmission as an integral environmental dimension of antimicrobial resistance through the "One Health―lens. Critical Reviews in Environmental Science and Technology, 2022, 52, 4172-4193.	6.6	24
21	How do zinc oxide and zero valent iron nanoparticles impact the occurrence of antibiotic resistance genes in landfill leachate?. Environmental Science: Nano, 2019, 6, 2141-2151.	2.2	23
22	Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation. Journal of Hazardous Materials, 2022, 430, 128432.	6.5	18
23	Associations between human bacterial pathogens and ARGs are magnified in leachates as landfill ages. Chemosphere, 2021, 264, 128446.	4.2	16
24	Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: beneficiary to victim. Applied Microbiology and Biotechnology, 2018, 102, 597-604.	1.7	14
25	Short tests to couple N 2 O emission mitigation and nitrogen removal strategies for landfill leachate recirculation. Science of the Total Environment, 2015, 512-513, 19-25.	3.9	6
26	Dissemination of antibiotic resistance under antibiotics pressure during anaerobic co-digestion of food waste and sludge: Insights of driving factors, genetic expression, and regulation mechanism. Bioresource Technology, 2022, 344, 126257.	4.8	6
27	Effects of oxygen and carbon content on nitrogen removal capacities in landfill bioreactors and response of microbial dynamics. Applied Microbiology and Biotechnology, 2016, 100, 6427-6434.	1.7	5
28	Validated predictive modelling of sulfonamide and beta-lactam resistance genes in landfill leachates. Journal of Environmental Management, 2019, 241, 123-130.	3.8	4
29	The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes. Journal of Hazardous Materials, 2021, 416, 125744.	6.5	2