
Roberto Beghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8644913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology and Technology, 2014, 87, 13-20.	2.9	103
2	Apples Nutraceutic Properties Evaluation Through a Visible and Near-Infrared Portable System. Food and Bioprocess Technology, 2013, 6, 2547-2554.	2.6	67
3	Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis) Tj ETQq1 1	0.784314 2.9	rgBT /Overloc 48
4	Rapid evaluation of craft beer quality during fermentation process by vis/NIR spectroscopy. Journal of Food Engineering, 2014, 142, 80-86.	2.7	45
5	Wavelength Selection with a View to a Simplified Handheld Optical System to Estimate Grape Ripeness. American Journal of Enology and Viticulture, 2014, 65, 117-123.	0.9	41
6	Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends in Food Science and Technology, 2015, 46, 331-338.	7.8	37
7	Use of visible and near infrared spectroscopy with a view to on-line evaluation of oil content during olive processing. Biosystems Engineering, 2018, 172, 102-109.	1.9	34
8	Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Reviews in Analytical Chemistry, 2017, 36, .	1.5	33
9	Application of visible/near infrared spectroscopy to quality control of fresh fruits and vegetables in largeâ€scale mass distribution channels: a preliminary test on carrots and tomatoes. Journal of the Science of Food and Agriculture, 2018, 98, 2729-2734.	1.7	33
10	Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS–NIR spectroscopy. Talanta, 2014, 120, 368-375.	2.9	32
11	Testing of a VIS-NIR System for the Monitoring of Long-Term Apple Storage. Food and Bioprocess Technology, 2014, 7, 2134-2143.	2.6	31
12	Rapid monitoring of grape withering using visible near-infrared spectroscopy. Journal of the Science of Food and Agriculture, 2015, 95, 3144-3149.	1.7	26
13	A Simplified, Light Emitting Diode (LED) Based, Modular System to be Used for the Rapid Evaluation of Fruit and Vegetable Quality: Development and Validation on Dye Solutions. Sensors, 2015, 15, 22705-22723.	2.1	26
14	Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 2017, 204, 46-54.	2.7	25
15	Setting-up of a simplified handheld optical device for decay detection in fresh-cut Valerianella locusta L Journal of Food Engineering, 2014, 127, 10-15.	2.7	22
16	Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness. Biosystems Engineering, 2020, 189, 1-10.	1.9	22
17	A reliable tool based on near-infrared spectroscopy for the monitoring of moisture content in roasted and ground coffee: A comparative study with thermogravimetric analysis. Food Control, 2021, 130, 108312.	2.8	19
18	Nondestructive Apple Ripening Stage Determination Using the Delta Absorbance Meter at Harvest and after Storage. HortTechnology, 2017, 27, 54-64.	0.5	17

ROBERTO BEGHI

#	Article	IF	CITATIONS
19	Characterization of green, roasted beans, and ground coffee using near infrared spectroscopy: A comparison of two devices. Journal of Near Infrared Spectroscopy, 2019, 27, 93-104.	0.8	15
20	Chemometrics in Food Technology. , 2012, , .		14
21	Design of cost-effective LED based prototypes for the evaluation of grape (Vitis vinifera L.) ripeness. Computers and Electronics in Agriculture, 2021, 189, 106381.	3.7	14
22	Potential effectiveness of visible and near infrared spectroscopy coupled with wavelength selection for real time grapevine leaf water status measurement. Journal of the Science of Food and Agriculture, 2018, 98, 1935-1943.	1.7	13
23	Feasibility of filter-based NIR spectroscopy for the routine measurement of olive oil fruit ripening indices. European Journal of Lipid Science and Technology, 2017, 119, 1600239.	1.0	12
24	Application of visible-near infrared spectroscopy to evaluate the quality of button mushrooms. Journal of Near Infrared Spectroscopy, 2019, 27, 38-45.	0.8	11
25	Evaluation of Energy Saving Using a New Yeast Combined with Temperature Management in Sparkling Base Wine Fermentation. American Journal of Enology and Viticulture, 2016, 67, 308-314.	0.9	10
26	Influence of packaging in the analysis of fresh-cut Valerianella locusta L. and Golden Delicious apple slices by visible-near infrared and near infrared spectroscopy. Journal of Food Engineering, 2016, 171, 145-152.	2.7	10
27	Visible Near Infrared Spectroscopy as a Green Technology: An Environmental Impact Comparative Study on Olive Oil Analyses. Sustainability, 2019, 11, 2611.	1.6	10
28	Application of near Infrared Spectroscopy and Development of Simplified Optical Devices for the Fresh-Cut Fruit and Vegetable Sector. NIR News, 2016, 27, 4-6.	1.6	9
29	Environmental Impact of Food Preparations Enriched with Phenolic Extracts from Olive Oil Mill Waste. Foods, 2021, 10, 980.	1.9	8
30	Comparison of two immersion probes coupled with visible/near infrared spectroscopy to assess the must infection at the grape receiving area. Computers and Electronics in Agriculture, 2018, 146, 86-92.	3.7	7
31	Evaluation of consumer domestic habits on the environmental impact of ready-to-eat and minimally processed fresh-cut lamb's lettuce. Sustainable Production and Consumption, 2021, 28, 925-935.	5.7	6
32	Optical specifications for a proximal sensing approach to monitor the vine water status in a distributed and autonomous fashion. Biosystems Engineering, 2021, 212, 388-398.	1.9	6
33	Application of a Cost-Effective Visible/Near Infrared Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay Grapes. Applied Sciences (Switzerland), 2022, 12, 4853.	1.3	5
34	Derivation of a Blueberry Ripeness Index with a View to a Low-Cost, Handheld Optical Sensing Device for Supporting Harvest Decisions. Transactions of the ASABE, 2013, , 1551-1559.	1.1	4
35	Industrial Heat Pump Dryer For Chestnuts (Castanea Sativa Mill.): Performance Evaluation. Applied Engineering in Agriculture, 2013, , 705-715.	0.3	1

 $_{36}$ Testing and design of a passive container for the optimisation of highbush blueberries (Vaccinium) Tj ETQq0 0 0 rgBT_/Overlock 10 Tf 50 $_{0.7}$

Roberto Beghi

#	Article	IF	CITATIONS
37	Evaluation of energy requirements of an industrial scale plant for the cultivation of white button mushroom (Agaricus bisporus). Journal of Agricultural Engineering, 2020, 51, 57-63.	0.7	1
38	Technological innovation in the winery addressing oenology 4.0: Testing of an automated system for the alcoholic fermentation management. Journal of Agricultural Engineering, 2021, 52, .	0.7	1
39	A Light Emitting Diode Based Simplified System for Rapid Grape Ripeness Monitoring. NIR News, 2016, 27, 8-11.	1.6	0
40	Optimization of the Olive Production Chain through Optical Techniques and Development of New Cost-Effective Optical Systems Inspired by Agriculture 4.0. , 0, , .		0