
Longjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8644745/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Enhanced Cycling Stability of Hybrid Li–Air Batteries Enabled by Ordered Pd ₃ Fe Intermetallic Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7278-7281.	13.7	149
2	Hybrid and Aqueous Lithiumâ€Air Batteries. Advanced Energy Materials, 2015, 5, 1401302.	19.5	131
3	Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts. Energy and Environmental Science, 2014, 7, 2630.	30.8	129
4	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nature Communications, 2017, 8, 2277.	12.8	117
5	Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency. Energy and Environmental Science, 2015, 8, 3274-3282.	30.8	107
6	VO ₂ /rGO nanorods as a potential anode for sodium- and lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14750-14758.	10.3	99
7	A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochemistry Communications, 2012, 14, 78-81.	4.7	95
8	Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy, 2015, 12, 852-860.	16.0	92
9	Delineating the roles of Co ₃ O ₄ and N-doped carbon nanoweb (CNW) in bifunctional Co ₃ O ₄ /CNW catalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2015, 3, 11615-11623.	10.3	91
10	O―and Nâ€Doped Carbon Nanowebs as Metalâ€Free Catalysts for Hybrid Liâ€Air Batteries. Advanced Energy Materials, 2014, 4, 1301795.	19.5	89
11	Longâ€Life, Highâ€Voltage Acidic Zn–Air Batteries. Advanced Energy Materials, 2016, 6, 1502054.	19.5	84
12	Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free Aqueous Electrochemical Devices. Joule, 2019, 3, 2968-2985.	24.0	84
13	Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries. Nano Energy, 2014, 9, 94-100.	16.0	60
14	Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. Nano Letters, 2019, 19, 1387-1394.	9.1	59
15	Dual-electrolyte lithium–air batteries: influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density. Journal of Materials Chemistry A, 2013, 1, 5121.	10.3	52
16	Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium–sulfur battery membranes cast from polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2016, 4, 16946-16952.	10.3	45
17	Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries. ACS Central Science, 2017, 3, 399-406.	11.3	44
18	Polyprotic acid catholyte for high capacity dual-electrolyte Li–air batteries. Physical Chemistry Chemical Physics, 2012, 14, 12737.	2.8	38

Longjun Li

#	Article	IF	CITATIONS
19	Imidazole-buffered acidic catholytes for hybrid Li–air batteries with high practical energy density. Electrochemistry Communications, 2014, 47, 67-70.	4.7	29
20	Expandable-graphite-derived graphene for next-generation battery chemistries. Journal of Power Sources, 2015, 284, 60-67.	7.8	25
21	Understanding the Redox Obstacles in High Sulfur-Loading Li–S Batteries and Design of an Advanced Gel Cathode. Journal of Physical Chemistry Letters, 2016, 7, 1392-1399.	4.6	24
22	Dual-template synthesis of N-doped macro/mesoporous carbon with an open-pore structure as a metal-free catalyst for dye-sensitized solar cells. Journal of Power Sources, 2015, 300, 254-260.	7.8	21
23	Morphological Transformations during In Situ Electrochemical Generation of 2-Dimensional Co3O4Hexagonal Nanoplates. Journal of the Electrochemical Society, 2016, 163, A150-A155.	2.9	13
24	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. Macromolecules, 2018, 51, 7666-7671.	4.8	9