Pedro Xavier-Elsas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8644686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Increase in Bone-marrow Eosinophil Production and Responses to Eosinopoietic Interleukins Triggered by Intranasal Allergen Challenge. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 404-413.	2.9	123
2	Macrophage migration inhibitory factor is critical to interleukinâ€5â€driven eosinophilopoiesis and tissue eosinophilia triggered by <i>Schistosoma mansoni</i> infection. FASEB Journal, 2009, 23, 1262-1271.	0.5	40
3	lgE antibody and resistance to infection II. Effect of IgE suppression on the early and late skin reaction and resistance of rats toSchistosoma mansoni infection. European Journal of Immunology, 1986, 16, 589-595.	2.9	37
4	Inducible Nitric Oxide Synthase/CD95L-dependent Suppression of Pulmonary and Bone Marrow Eosinophilia by Diethylcarbamazine. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 429-437.	5.6	34
5	Upregulation by glucocorticoids of responses to eosinopoietic cytokines in bone-marrow from normal and allergic mice. British Journal of Pharmacology, 2000, 129, 1543-1552.	5.4	29
6	Relationship of neutrophil phagocytosis and oxidative burst with the subgingival microbiota of generalized aggressive periodontitis. Oral Microbiology and Immunology, 2009, 24, 124-132.	2.8	28
7	Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) single nucleotide polymorphisms: Importance in ARDS in septic pediatric critically ill patients. Human Immunology, 2012, 73, 661-667.	2.4	28
8	Monocytes activate eosinophils for enhanced helminthotoxicity and increased generation of leukotriene C4. Annales De L'Institut Pasteur Immunologie, 1987, 138, 97-116.	0.8	21
9	Prostaglandin E2 and dexamethasone regulate eosinophil differentiation and survival through a nitric oxide- and CD95-dependent pathway. Nitric Oxide - Biology and Chemistry, 2004, 11, 184-193.	2.7	21
10	Increased production of tumor necrosis factor-alpha in whole blood cultures from children with primary malnutrition. Brazilian Journal of Medical and Biological Research, 2005, 38, 171-183.	1.5	19
11	Cysteinyl leukotrienes mediate the enhancing effects of indomethacin and aspirin on eosinophil production in murine bone marrow cultures. British Journal of Pharmacology, 2008, 153, 528-535.	5.4	19
12	Evidence for a regulatory role of α4 – integrins in the maturation of eosinophils generated from the bone marrow in the presence of dexamethasone. Clinical and Experimental Allergy, 2009, 39, 1187-1198.	2.9	19
13	Quantification and Localization of Platelet-Derived Growth Factor in Gingiva of Periodontitis Patients. Journal of Periodontology, 2003, 74, 323-328.	3.4	18
14	Cysteinyl-leukotriene type 1 receptors transduce a critical signal for the up-regulation of eosinophilopoiesis by interleukin-13 and eotaxin in murine bone marrow. Journal of Leukocyte Biology, 2010, 87, 885-893.	3.3	18
15	Induction of bone-marrow eosinophilia in mice submitted to surgery is dependent on stress-induced secretion of glucocorticoids. British Journal of Pharmacology, 2004, 143, 541-548.	5.4	17
16	5-Lipoxygenase-Dependent Recruitment of Neutrophils and Macrophages by Eotaxin-Stimulated Murine Eosinophils. Mediators of Inflammation, 2014, 2014, 1-13.	3.0	17
17	Leukotriene B4 is essential for selective eosinophil recruitment following allergen challenge of CD4+ cells in a model of chronic eosinophilic inflammation. Life Sciences, 2008, 83, 214-222.	4.3	16
18	Murine myeloid progenitor responses to GM-CSF and eosinophil precursor responses to IL-5 represent distinct targets for downmodulation by prostaglandin E2. British Journal of Pharmacology, 2000, 130, 1362-1368.	5.4	14

PEDRO XAVIER-ELSAS

#	Article	IF	CITATIONS
19	Prediction of sepsis-related outcomes in neonates through systematic genotyping of polymorphisms in genes for innate immunity and inflammation: a narrative review and critical perspective. Sao Paulo Medical Journal, 2013, 131, 338-350.	0.9	13
20	Allergenic sensitization prevents upregulation of haemopoiesis by cyclo-oxygenase inhibitors in mice. British Journal of Pharmacology, 2002, 135, 1315-1323.	5.4	11
21	Roles of 5-Lipoxygenase and Cysteinyl-Leukotriene Type 1 Receptors in the Hematological Response to Allergen Challenge and Its Prevention by Diethylcarbamazine in a Murine Model of Asthma. Mediators of Inflammation, 2014, 2014, 1-10.	3.0	11
22	Eosinophilopoiesis at the Cross-Roads of Research on Development, Immunity and Drug Discovery. Current Medicinal Chemistry, 2007, 14, 1925-1939.	2.4	10
23	Ectopic lung transplantation induces the accumulation of eosinophil progenitors in the recipients' lungs through an allergen- and interleukin-5-dependent mechanism. Clinical and Experimental Allergy, 2007, 37, 29-38.	2.9	10
24	G-CSF suppresses allergic pulmonary inflammation, downmodulating cytokine, chemokine and eosinophil production. Life Sciences, 2011, 88, 830-838.	4.3	10
25	Essential roles of endogenous glucocorticoids and TNF/TNFR1 in promoting bone-marrow eosinopoiesis in ovalbumin-sensitized, airway-challenged mice. Life Sciences, 2014, 94, 74-82.	4.3	9
26	Cells isolated from bone-marrow and lungs of allergic BALB/C mice and cultured in the presence of IL-5 are respectively resistant and susceptible to apoptosis induced by dexamethasone. International Immunopharmacology, 2005, 5, 857-870.	3.8	8
27	Eosinophil cytotoxicity enhancing factor: purification, characterization and immunocytochemical localization on the monocyte surface. European Journal of Immunology, 1990, 20, 1143-1151.	2.9	7
28	The Effects of Allergen and Anti-Allergic Drugs on Murine Hemopoietic Cells: Moving Targets, Unusual Mechanisms, and Changing Paradigms. Inflammation and Allergy: Drug Targets, 2003, 2, 329-337.	3.1	7
29	αâ€ <scp>G</scp> alactosylceramide suppresses murine eosinophil production through interferonâ€Î³â€dependent induction of <scp>NO</scp> synthase and <scp>CD</scp> 95. British Journal of Pharmacology, 2015, 172, 3313-3325.	5.4	7
30	lsolation and Characterization of Hemopoietic Cells From Lungs of Allergic Mice. Chest, 2003, 123, 345S-348S.	0.8	6
31	Essential Roles of PKA, iNOS, CD95/CD95L, and Terminal Caspases in Suppression of Eosinopoiesis by PGE2 and Other cAMP-Elevating Agents. Scientific World Journal, The, 2013, 2013, 1-13.	2.1	6
32	Do glucocorticoids enhance eosinopoiesis?. Trends in Pharmacological Sciences, 2000, 21, 417-420.	8.7	5
33	Modulation of the Effects of Lung Immune Response on Bone Marrow by Oral Antigen Exposure. BioMed Research International, 2013, 2013, 1-11.	1.9	5
34	Novel lineage- and stage-selective effects of retinoic acid on mouse granulopoiesis: Blockade by dexamethasone or inducible NO synthase inactivation. International Immunopharmacology, 2017, 45, 79-89.	3.8	5
35	Potent stimulation of eosinopoiesis in murine bone-marrow by myriadenolide is mediated by cysteinyl-leukotriene signaling. International Immunopharmacology, 2019, 72, 82-91.	3.8	5
36	Stimulation of early eosinophil progenitors by a heat stable alveolar macrophage product from ovalbumin-sensitized and non-sensitized guinea pigs. Clinical and Experimental Allergy, 1997, 27, 208-217.	2.9	4

PEDRO XAVIER-ELSAS

#	Article	IF	CITATIONS
37	Blockage of Eosinopoiesis by IL-17A Is Prevented by Cytokine and Lipid Mediators of Allergic Inflammation. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	3
38	The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors. Mediators of Inflammation, 2015, 2015, 1-12.	3.0	3
39	Allergen challenge-induced changes in bone-marrow responses to leukotriene D4, nonsteroidal anti-inflammatory drugs and cytokines. Immunopharmacology and Immunotoxicology, 2020, 42, 199-210.	2.4	3
40	The Need to Consider Context in the Evaluation of Anti-infectious and Immunomodulatory Effects of Vitamin A and its Derivatives. Current Drug Targets, 2019, 20, 871-878.	2.1	3
41	Anti-Inflammatory Drug Effects on Apoptosis of Eosinophil Granulocytes Derived from Murine Bone-Marrow: Cellular Mechanisms as Related to Lineage, Developmental Stage and Hemopoietic Environment. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2006, 5, 13-25.	1.1	1
42	How reliable is online diffusion of medical information targeting patients and families?. World Journal of Experimental Medicine, 2015, 5, 244.	1.7	1
43	Odd couple: The unexpected partnership of glucocorticoid hormones and cysteinyl-leukotrienes in the extrinsic regulation of murine bone-marrow eosinopoiesis. World Journal of Experimental Medicine, 2017, 7, 11.	1.7	1
44	Effects of oral wound on the neutrophil lineage in murine bone-marrow: Modulation mechanism hindered by chlorhexidine. International Immunopharmacology, 2022, 105, 108544.	3.8	1
45	PS1-075. Alpha-galactosyl ceramide, An activator of invariant natural killer T cells, suppresses eosinopoiesis by an inducible no synthase- and CD95L-dependent mechanism. Cytokine, 2011, 56, 36.	3.2	0
46	PS2-052. Interleukin-17 A Suppresses Eosinopoiesis By An Inducible No Synthase- And CD95L-Dependent Mechanism. Cytokine, 2011, 56, 76.	3.2	0
47	Surgical and immune reconstitution murine models in bone marrow research: Potential for exploring mechanisms in sepsis, trauma and allergy. World Journal of Experimental Medicine, 2017, 7, 58.	1.7	0