Hojae Bae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8644640/publications.pdf

Version: 2024-02-01

115	11,964	52	108
papers	citations	h-index	g-index
122	122	122	15900
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31, 5536-5544.	11.4	1,864
2	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	14.6	789
3	Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Advanced Functional Materials, 2012, 22, 2027-2039.	14.9	618
4	Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 2017, 35, 530-544.	11.7	579
5	Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33, 3824-3834.	11.4	560
6	Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 2010, 31, 6941-6951.	11.4	463
7	Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS Nano, 2012, 6, 362-372.	14.6	400
8	Microfabricated Biomaterials for Engineering 3D Tissues. Advanced Materials, 2012, 24, 1782-1804.	21.0	351
9	Current Progress in Reactive Oxygen Species (ROS)â€Responsive Materials for Biomedical Applications. Advanced Healthcare Materials, 2013, 2, 908-915.	7.6	291
10	Synthesis and Characterization of Tunable Poly(Ethylene Glycol): Gelatin Methacrylate Composite Hydrogels. Tissue Engineering - Part A, 2011, 17, 1713-1723.	3.1	268
11	Vascularized Bone Tissue Engineering: Approaches for Potential Improvement. Tissue Engineering - Part B: Reviews, 2012, 18, 363-382.	4.8	259
12	DNA-directed self-assembly of shape-controlled hydrogels. Nature Communications, 2013, 4, 2275.	12.8	238
13	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33, 9009-9018.	11.4	221
14	Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 2013, 5, 4171.	5.6	221
15	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	4.8	218
16	Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific Reports, 2014, 4, 4271.	3.3	213
17	Building Vascular Networks. Science Translational Medicine, 2012, 4, 160ps23.	12.4	202
18	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	14.9	146

#	Article	IF	CITATIONS
19	Microfluidic Spinning of Cellâ€Responsive Grooved Microfibers. Advanced Functional Materials, 2015, 25, 2250-2259.	14.9	130
20	Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering, 2017, 215, 23-32.	5.2	128
21	Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Scientific Reports, 2018, 8, 1171.	3.3	122
22	Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. PLoS ONE, 2016, 11, e0163902.	2.5	115
23	Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale, 2015, 7, 6436-6443.	5.6	114
24	Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjugate Chemistry, 2015, 26, 1984-2001.	3.6	111
25	Interfaceâ€Directed Selfâ€Assembly of Cellâ€Laden Microgels. Small, 2010, 6, 937-944.	10.0	110
26	Hyperbranched Polyester Hydrogels with Controlled Drug Release and Cell Adhesion Properties. Biomacromolecules, 2013, 14, 1299-1310.	5.4	110
27	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 2014, 35, 6268-6277.	11.4	109
28	Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation. Soft Matter, 2011, 7, 1903.	2.7	108
29	Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels. Advanced Materials, 2010, 22, 5276-5281.	21.0	107
30	Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2012, 18, 235-244.	4.8	102
31	Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone, 2014, 59, 189-198.	2.9	90
32	A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab on A Chip, 2011, 11, 1801.	6.0	89
33	Microscale Strategies for Generating Cell-Encapsulating Hydrogels. Polymers, 2012, 4, 1554-1579.	4.5	89
34	Influence of Transglutaminase-Induced Cross-Linking on Properties of Fish Gelatin Films. Journal of Food Science, 2006, 71, E376-E383.	3.1	87
35	Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 1-14.	2.7	86
36	Engineered Nanomembranes for Directing Cellular Organization Toward Flexible Biodevices. Nano Letters, 2013, 13, 3185-3192.	9.1	85

#	Article	IF	CITATIONS
37	Human-Derived Organ-on-a-Chip for Personalized Drug Development. Current Pharmaceutical Design, 2019, 24, 5471-5486.	1.9	72
38	Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis, 2010, 6, 234-244.	1.2	70
39	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	2.7	70
40	Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis, 2013, 9, 87-92.	1.2	65
41	Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 337-347.	2.7	64
42	Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter, 2010, 6, 5120.	2.7	63
43	Gelatin–Polyaniline Composite Nanofibers Enhanced Excitation–Contraction Coupling System Maturation in Myotubes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42444-42458.	8.0	62
44	A mini-microscope for in situ monitoring of cells. Lab on A Chip, 2012, 12, 3976.	6.0	60
45	Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment. Annals of Biomedical Engineering, 2012, 40, 1301-1315.	2.5	58
46	Directed Differentiation of Sizeâ€Controlled Embryoid Bodies Towards Endothelial and Cardiac Lineages in RGDâ€Modified Poly(Ethylene Glycol) Hydrogels. Advanced Healthcare Materials, 2013, 2, 195-205.	7.6	58
47	Microfabricated polyester conical microwells for cell culture applications. Lab on A Chip, $2011, 11, 2325.$	6.0	57
48	Generating Nonlinear Concentration Gradients in Microfluidic Devices for Cell Studies. Analytical Chemistry, 2011, 83, 2020-2028.	6.5	56
49	Directed assembly of cellâ€laden microgels for building porous threeâ€dimensional tissue constructs. Journal of Biomedical Materials Research - Part A, 2011, 97A, 93-102.	4.0	56
50	Lens-Free Imaging for Biological Applications. Journal of the Association for Laboratory Automation, 2012, 17, 43-49.	2.8	55
51	Reprint of: Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering, 2018, 220, 28-37.	5.2	54
52	Drug-Eluting Microarrays for Cell-Based Screening of Chemical-Induced Apoptosis. Analytical Chemistry, 2011, 83, 4118-4125.	6.5	53
53	Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2151-2163.	2.7	53
54	Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology. Tissue Engineering and Regenerative Medicine, 2020, 17, 423-431.	3.7	53

#	Article	IF	CITATIONS
55	A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods. Tissue Engineering - Part C: Methods, 2010, 16, 249-259.	2.1	50
56	Micropatterned Polymeric Nanosheets for Local Delivery of an Engineered Epithelial Monolayer. Advanced Materials, 2014, 26, 1699-1705.	21.0	49
57	Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Marine Drugs, 2018, 16, 484.	4.6	48
58	Nanogels Derived from Fish Gelatin: Application to Drug Delivery System. Marine Drugs, 2019, 17, 246.	4.6	47
59	An integrated microfluidic device for two-dimensional combinatorial dilution. Lab on A Chip, 2011, 11, 3277.	6.0	46
60	Microfluidic fabrication of cell adhesive chitosan microtubes. Biomedical Microdevices, 2013, 15, 465-472.	2.8	46
61	Siphon-driven microfluidic passive pump with a yarn flow resistance controller. Lab on A Chip, 2014, 14, 4213-4219.	6.0	43
62	Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system. Carbohydrate Polymers, 2021, 251, 117036.	10.2	41
63	Kappa-Carrageenan-Based Dual Crosslinkable Bioink for Extrusion Type Bioprinting. Polymers, 2020, 12, 2377.	4.5	38
64	Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Reviews and Reports, 2015, 11, 866-884.	5.6	35
65	Influence of Food with High Moisture Content on Oxygen Barrier Property of Polyvinyl Alcohol (PVA)/Vermiculite Nanocomposite Coated Multilayer Packaging Film. Journal of Food Science, 2018, 83, 349-357.	3.1	35
66	Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Scientific Reports, 2016, 6, 33784.	3.3	30
67	Passageâ€dependent cancerous transformation of human mesenchymal stem cells under carcinogenic hypoxia. FASEB Journal, 2013, 27, 2788-2798.	0.5	29
68	The Effect of Fetal Bovine Serum (FBS) on Efficacy of Cellular Reprogramming for Induced Pluripotent Stem Cell (iPSC) Generation. Cell Transplantation, 2016, 25, 1025-1042.	2.5	29
69	Cytotoxicity Evaluation of Turmeric Extract Incorporated Oil-in-Water Nanoemulsion. International Journal of Molecular Sciences, 2018, 19, 280.	4.1	29
70	Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials Science, 2015, 3, 1449-1458.	5.4	27
71	Online Monitoring of Superoxide Anions Released from Skeletal Muscle Cells Using an Electrochemical Biosensor Based on Thick-Film Nanoporous Gold. ACS Sensors, 2016, 1, 921-928.	7.8	27
72	Organ-On-A-Chip: Development and Clinical Prospects Toward Toxicity Assessment with an Emphasis on Bone Marrow. Drug Safety, 2015, 38, 409-418.	3.2	26

#	Article	IF	Citations
73	ZrO2 surface chemically coated with hyaluronic acid hydrogel loading GDF-5 for osteogenesis in dentistry. Carbohydrate Polymers, 2013, 92, 167-175.	10.2	25
74	The Use of Microtechnology and Nanotechnology in Fabricating Vascularized Tissues. Journal of Nanoscience and Nanotechnology, 2014, 14, 487-500.	0.9	25
75	Human hair keratin-based biofilm for potent application to periodontal tissue regeneration. Macromolecular Research, 2015, 23, 300-308.	2.4	22
76	Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication, 2010, 2, 045001.	7.1	21
77	Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromolecular Research, 2015, 23, 245-255.	2.4	21
78	Potential silver nanoparticles migration from commercially available polymeric baby products into food simulants. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 996-1005.	2.3	19
79	Microwell-mediated cell spheroid formation and its applications. Macromolecular Research, 2018, 26, 1-8.	2.4	19
80	Rapid monitoring of alkaline phosphatase in raw milk using $1,1\hat{a}\in^2$ -oxalyldiimidazole chemiluminescence detection. Analytical Methods, 2011, 3, 156-160.	2.7	18
81	Optimization of Polysaccharide Hydrocolloid for the Development of Bioink with High Printability/Biocompatibility for Coextrusion 3D Bioprinting. Polymers, 2021, 13, 1773.	4.5	17
82	Highâ€throughput investigation of endothelialâ€toâ€mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnology and Bioengineering, 2016, 113, 1403-1412.	3.3	16
83	Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromolecular Research, 2016, 24, 1115-1125.	2.4	16
84	Deep wells integrated with microfluidic valves for stable docking and storage of cells. Biotechnology Journal, 2011, 6, 156-164.	3.5	15
85	Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 690-699.	2.7	15
86	Development of Flexible Cell-Loaded Ultrathin Ribbons for Minimally Invasive Delivery of Skeletal Muscle Cells. ACS Biomaterials Science and Engineering, 2017, 3, 579-589.	5.2	15
87	Flexible and Stretchable PEDOTâ€Embedded Hybrid Substrates for Bioengineering and Sensory Applications. ChemNanoMat, 2019, 5, 729-737.	2.8	15
88	Calcium Phosphateâ€Reinforced Photosensitizerâ€Loaded Polymer Nanoparticles for Photodynamic Therapy. Chemistry - an Asian Journal, 2013, 8, 3222-3229.	3.3	14
89	THERAPEUTIC APPLICATION OF NANOTECHNOLOGY IN CARDIOVASCULAR AND PULMONARY REGENERATION. Computational and Structural Biotechnology Journal, 2013, 7, e201304005.	4.1	13
90	In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation. PLoS ONE, 2017, 12, e0170735.	2.5	13

#	Article	IF	Citations
91	Fabrication of hollow porous PLGA microspheres using sucrose for controlled dual delivery of dexamethasone and BMP2. Journal of Industrial and Engineering Chemistry, 2016, 37, 101-106.	5.8	10
92	A Liquid Chromatography – Tandem Mass Spectrometry Approach for the Identification of Mebendazole Residue in Pork, Chicken, and Horse. PLoS ONE, 2017, 12, e0169597.	2.5	9
93	Improving Printability of Digital-Light-Processing 3D Bioprinting via Photoabsorber Pigment Adjustment. International Journal of Molecular Sciences, 2022, 23, 5428.	4.1	8
94	Effects of vitamin D2-fortified shiitake mushroom on bioavailability and bone structure. Bioscience, Biotechnology and Biochemistry, 2019, 83, 942-951.	1.3	7
95	Microfluidic systems for controlling stem cell microenvironments. , 2019, , 31-63.		7
96	Cell-Laden Gelatin Methacryloyl Bioink for the Fabrication of Z-Stacked Hydrogel Scaffolds for Tissue Engineering. Polymers, 2020, 12, 3027.	4.5	7
97	Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS Omega, 2021, 6, 33511-33522.	3.5	7
98	Down-Regulation of Transglutaminase 2 Stimulates Redifferentiation of Dedifferentiated Chondrocytes through Enhancing Glucose Metabolism. International Journal of Molecular Sciences, 2017, 18, 2359.	4.1	6
99	Applicability of biaxially oriented poly(trimethylene terephthalate) films using bioâ€based 1,3â€propanediol in retort pouches. Journal of Applied Polymer Science, 2018, 135, 46251.	2.6	6
100	Identification and Evaluation of Cytotoxicity of Peptide Liposome Incorporated Citron Extracts in an in Vitro System. International Journal of Molecular Sciences, 2018, 19, 626.	4.1	6
101	Fluorescence-coded DNA Nanostructure Probe System to Enable Discrimination of Tumor Heterogeneity via a Screening of Dual Intracellular microRNA Signatures in situ. Scientific Reports, 2017, 7, 13499.	3.3	5
102	New Biomaterials in Drug Delivery and Wound Care. BioMed Research International, 2015, 2015, 1-2.	1.9	4
103	Reversible Redox Activity by Ion-pH Dually Modulated Duplex Formation of i-Motif DNA with Complementary G-DNA. Nanomaterials, 2018, 8, 226.	4.1	3
104	Microengineering Approach for Directing Embryonic Stem Cell Differentiation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 153-171.	1.0	2
105	Cell Surface Nanoâ€modulation for Nonâ€invasive inâ€vivo Nearâ€IR Stem Cell Monitoring. ChemMedChem, 2017, 12, 28-32.	3.2	2
106	Microfluidic Systems for Controlling Stem Cells Microenvironments. , 2013, , 175-203.		1
107	Forming vascular networks within functional cardiac tissue constructs. Biomedical Engineering Letters, 2013, 3, 138-143.	4.1	1
108	Mesoderm Lineage 3D Tissue Constructs Are Produced at Largeâ€Scale in a 3D Stem Cell Bioprocess. Biotechnology Journal, 2017, 12, 1600748.	3.5	1

#	Article	IF	CITATIONS
109	Microscale Biomaterials for Tissue Engineering. , 2011, , 119-138.		1
110	Microscale Technologies for Tissue Engineering and Stem Cell Differentiation., 2011,, 375-396.		1
111	Stem Cells: Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels (Adv. Mater. 46/2010). Advanced Materials, 2010, 22, 5220-5220.	21.0	0
112	Exponential Concentration Gradients in Microfluidic Devices for Cell Studies. , 2011, , .		0
113	Spica Prunella extract inhibits phosphorylation of JNK, ERK and lκBα signals during osteoclastogenesis. Food Science and Biotechnology, 2013, 22, 1691-1698.	2.6	0
114	Microfabricated gels for tissue engineering., 0,, 317-331.		0
115	Microtechnological Approaches in Stem Cell Science. , 2012, , 135-165.		0