Laura Saldaña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8644618/publications.pdf Version: 2024-02-01

Ι ΛΙΙΡΑ ΟΛΙ ΠΑΑ̈́+Α

#	Article	IF	CITATIONS
1	Wear of hip prostheses increases serum IGFBP-1 levels in patients with aseptic loosening. Scientific Reports, 2021, 11, 576.	1.6	1
2	Vitamin B9 derivatives as carriers of bioactive cations for musculoskeletal regeneration applications: Synthesis, characterization and biological evaluation. European Journal of Medicinal Chemistry, 2021, 212, 113152.	2.6	4
3	Impaction bone grafting in hip re-revision surgery. Bone and Joint Journal, 2021, 103-B, 492-499.	1.9	10
4	Osteoblast function in patients with idiopathic osteonecrosis of the femoral head. Bone and Joint Research, 2021, 10, 619-628.	1.3	10
5	Effect of Thermal Processing on the Dynamic/Isothermal Crystallization and Cytocompatibility of Polylactic Acid for Biomedical Applications. Macromolecular Chemistry and Physics, 2021, 222, 2100274.	1.1	3
6	Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers, 2021, 13, 3453.	2.0	0
7	Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 57.	2.4	41
8	In vitro degradation of biodegradable polylactic acid/Mg composites: Influence of nature and crystalline degree of the polymeric matrix. Materialia, 2019, 6, 100270.	1.3	21
9	Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Research and Therapy, 2019, 10, 58.	2.4	126
10	Substrate Microarchitecture Shapes the Paracrine Crosstalk of Stem Cells with Endothelial Cells and Osteoblasts. Scientific Reports, 2017, 7, 15182.	1.6	15
11	Paracrine interactions between mesenchymal stem cells and macrophages are regulated by 1,25-dihydroxyvitamin D3. Scientific Reports, 2017, 7, 14618.	1.6	18
12	Incorporation of Mg particles into PDLLA regulates mesenchymal stem cell and macrophage responses. Journal of Biomedical Materials Research - Part A, 2016, 104, 866-878.	2.1	50
13	Bioactivity of dexamethasone-releasing coatings on polymer/magnesium composites. Biomedical Materials (Bristol), 2016, 11, 055011.	1.7	12
14	On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing. Biomedical Materials (Bristol), 2016, 11, 015009.	1.7	15
15	Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials, 2015, 37, 124-133.	5.7	100
16	Mechanical forces regulate stem cell response to surface topography. Journal of Biomedical Materials Research - Part A, 2014, 102, 128-140.	2.1	18
17	Human boneâ€ineage cell responses to anisotropic Ti6Al4V surfaces are dependent on their maturation state. Journal of Biomedical Materials Research - Part A, 2014, 102, 3154-3166.	2.1	3
18	Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery. Journal of Controlled Release, 2013, 171, 63-72.	4.8	22

Laura Saldaña

#	Article	IF	CITATIONS
19	Simvastatin prevents the induction of interleukin-6 gene expression by titanium particles in human osteoblastic cells. Acta Biomaterialia, 2013, 9, 4916-4925.	4.1	16
20	Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 106, 248-257.	2.5	35
21	Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 421-433.	1.3	17
22	Grit blasting of medical stainless steel: implications on its corrosion behavior, ion release and biocompatibility. Journal of Materials Science: Materials in Medicine, 2012, 23, 657-666.	1.7	20
23	Bacterial adhesion reduction on a biocompatible Si+ ion implanted austenitic stainless steel. Materials Science and Engineering C, 2011, 31, 1567-1576.	3.8	15
24	In search of representative models of human bone-forming cells for cytocompatibility studies. Acta Biomaterialia, 2011, 7, 4210-4221.	4.1	72
25	Corrosion behaviour and biocompatibility of a novel Ni-free intermetallic coating growth on austenitic steel by hot dipping in an Al–12.6%Si alloy. Journal of Materials Science: Materials in Medicine, 2011, 22, 1005-1014.	1.7	9
26	On the role of RhoA/ROCK signaling in contact guidance of bone-forming cells on anisotropic Ti6Al4V surfaces. Acta Biomaterialia, 2011, 7, 1890-1901.	4.1	41
27	Effects of micrometric titanium particles on osteoblast attachment and cytoskeleton architecture. Acta Biomaterialia, 2010, 6, 1649-1660.	4.1	57
28	Interactions of human bone cells with diamond-like carbon polymer hybrid coatings. Acta Biomaterialia, 2010, 6, 3325-3338.	4.1	22
29	In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomaterialia, 2009, 5, 181-192.	4.1	131
30	Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. Acta Biomaterialia, 2009, 5, 1294-1305.	4.1	53
31	In situ cell culture monitoring on a Ti–6Al–4V surface by electrochemical techniques. Acta Biomaterialia, 2009, 5, 1374-1384.	4.1	24
32	Rutile and titanium particles differentially affect the production of osteoblastic local factors. Journal of Biomedical Materials Research - Part A, 2008, 84A, 324-336.	2.1	34
33	Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Journal of Biomedical Materials Research - Part A, 2007, 81A, 334-346.	2.1	39
34	In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials, 2007, 28, 4343-4354.	5.7	161
35	Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials, 2006, 27, 5199-5211.	5.7	76
36	Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. Journal of Biomedical Materials Research - Part A, 2006, 77A, 220-229.	2.1	29

Laura Saldaña

#	Article	IF	CITATIONS
37	Osteoblast response to plasma-spray porous Ti6Al4V coating on substrates of identical alloy. Journal of Biomedical Materials Research - Part A, 2006, 77A, 608-617.	2.1	18
38	Alumina particles influence the interactions of cocultured osteoblasts and macrophages. Journal of Orthopaedic Research, 2006, 24, 46-54.	1.2	29
39	Osteoblast response to thermally oxidized Ti6Al4V alloy. Journal of Biomedical Materials Research - Part A, 2005, 73A, 97-107.	2.1	51
40	In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials, 2003, 24, 19-26.	5.7	159
41	Effects of polyethylene and α-alumina particles on IL-6 expression and secretion in primary cultures of human osteoblastic cells. Biomaterials, 2002, 23, 901-908.	5.7	20
42	Influence of particle size in the effect of polyethylene on human osteoblastic cells. Biomaterials, 2001, 22, 755-762.	5.7	12