Yeon Hoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8644551/publications.pdf Version: 2024-02-01

YEON HOO KIM

#	Article	IF	CITATIONS
1	Fabrication of a Microcavity Prepared by Remote Epitaxy over Monolayer Molybdenum Disulfide. ACS Nano, 2022, 16, 2399-2406.	14.6	13
2	Tailored Graphene Micropatterns by Waferâ€Scale Direct Transfer for Flexible Chemical Sensor Platform. Advanced Materials, 2021, 33, e2004827.	21.0	40
3	Low barrier height in a ZnO nanorods/NbSe2 heterostructure prepared by van der Waals epitaxy. APL Materials, 2021, 9, .	5.1	2
4	Voltage-dependent gas discrimination using self-activated graphene with Pt decoration. Sensors and Actuators B: Chemical, 2021, 349, 130696.	7.8	2
5	Enhanced van der Waals epitaxy of germanium by out-of-plane dipole moment induced from transferred graphene on TiN/AlN multilayers. Journal of Applied Physics, 2021, 130, .	2.5	3
6	Band gap engineering of graphene oxide for ultrasensitive NO2 gas sensing. Carbon, 2020, 159, 175-184.	10.3	52
7	Hierarchical assembly of ZnO nanowire trunks decorated with ZnO nanosheets for lithium ion battery anodes. RSC Advances, 2020, 10, 13655-13661.	3.6	9
8	Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InformaÄnÃ- Materiály, 2019, 1, 289-316.	17.3	123
9	Two-Dimensional NbS ₂ Gas Sensors for Selective and Reversible NO ₂ Detection at Room Temperature. ACS Sensors, 2019, 4, 2395-2402.	7.8	101
10	Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale, 2019, 11, 2966-2973.	5.6	46
11	NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process. Sensors and Actuators B: Chemical, 2019, 286, 512-520.	7.8	45
12	Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy, 2019, 58, 437-446.	16.0	36
13	Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS ₂ van der Waals composites. Journal of Materials Chemistry A, 2018, 6, 5016-5024.	10.3	132
14	Enhanced nucleation of germanium on graphene <i>via</i> dipole engineering. Nanoscale, 2018, 10, 5689-5694.	5.6	14
15	Effects of Grain Boundary Density on the Gas Sensing Properties of Triethylsilylethynylâ€Anthradithiophene Fieldâ€Effect Transistors. Advanced Materials Interfaces, 2018, 5, 1701399.	3.7	39
16	Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sensors and Actuators B: Chemical, 2018, 258, 775-782.	7.8	121
17	Synergetically Selective Toluene Sensing in Hematiteâ€Đecorated Nickel Oxide Nanocorals. Advanced Materials Technologies, 2017, 2, 1600259	5.8	41
18	Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. Journal of Materials Chemistry A, 2017, 5, 19116-19125.	10.3	83

Υέον Ηοο Κιμ

#	Article	IF	CITATIONS
19	Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges. Chemosensors, 2017, 5, 15.	3.6	92
20	Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS ₂ nanoparticles. Journal of Materials Chemistry A, 2016, 4, 6070-6076.	10.3	76
21	Vertically ordered SnO ₂ nanobamboos for substantially improved detection of volatile reducing gases. Journal of Materials Chemistry A, 2015, 3, 17939-17945.	10.3	40
22	Utilization of both-side metal decoration in close-packed SnO2 nanodome arrays for ultrasensitive gas sensing. Sensors and Actuators B: Chemical, 2015, 213, 314-321.	7.8	30
23	Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon, 2015, 91, 178-187.	10.3	183
24	Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano, 2015, 9, 10453-10460.	14.6	277
25	Novel Metal Oxide Gas Sensors for Mobile Devices. , 2015, , 131-153.		1
26	Highly sensitive and selective H2 and NO2 gas sensors based on surface-decorated WO3 nanoigloos. Sensors and Actuators B: Chemical, 2014, 198, 294-301.	7.8	99