Neil M. Donahue

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8643106/neil-m-donahue-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 170 30,493 329 h-index g-index citations papers 8.6 35,008 6.93 392 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
329	Modelling the gasparticle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 215-244	6.8	2
328	Limited Secondary Organic Aerosol Production from Acyclic Oxygenated Volatile Chemical Products <i>Environmental Science & Environmental Science & Env</i>	10.3	1
327	Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources. <i>One Earth</i> , 2022 , 5, 403-412	8.1	3
326	The seasonal variation, characteristics and secondary generation of PM in Xi'an, China, especially during pollution events <i>Environmental Research</i> , 2022 , 212, 113388	7.9	О
325	Synergistic HNO-HSO-NH upper tropospheric particle formation <i>Nature</i> , 2022 , 605, 483-489	50.4	5
324	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. <i>Environmental Science & Environmental Sc</i>	10.3	3
323	Chemical composition of nanoparticles from <i></i>-pinene nucleation and the influence of isoprene and relative humidity at low temperature. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 17099-17114	6.8	1
322	Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NO_{<i>x</i>} in eastern China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 14789-14814	6.8	3
321	Technical note: The enhancement limit of coagulation scavenging of small charged particles. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3827-3832	6.8	2
320	Impact of Urban Pollution on Organic-Mediated New-Particle Formation and Particle Number Concentration in the Amazon Rainforest. <i>Environmental Science & Environmental Scienc</i>	10.3	2
319	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091944	4.9	23
318	Atmospheric Nanoparticle Survivability Reduction Due to Charge-Induced Coagulation Scavenging Enhancement. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL092758	4.9	О
317	Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest from volatile organic compounds to highly oxygenated organic molecules. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8961-8977	6.8	1
316	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 4187-4202	4	2
315	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. <i>Aerosol Science and Technology</i> , 2021 , 55, 231-242	3.4	8
314	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. <i>Environmental Science Atmospheres</i> , 2021 , 1, 434-448		2
313	Peroxy radical kinetics and new particle formation. <i>Environmental Science Atmospheres</i> , 2021 , 1, 79-92		2

312	Efficient alkane oxidation under combustion engine and atmospheric conditions. <i>Communications Chemistry</i> , 2021 , 4,	6.3	11	
311	Role of iodine oxoacids in atmospheric aerosol nucleation. <i>Science</i> , 2021 , 371, 589-595	33.3	31	
310	Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 5913-5923	4	O	
309	The driving factors of new particle formation and growth in the polluted boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 14275-14291	6.8	8	
308	Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment. <i>Environmental Science & Environmental Science & </i>	10.3	5	
307	Primary ion diffusion charging and particle wall loss in smog chamber experiments. <i>Aerosol Science and Technology</i> , 2020 , 54, 1058-1069	3.4	2	
306	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. <i>Nature</i> , 2020 , 581, 184-189	50.4	72	
305	Size-dependent influence of NO on the growth rates of organic aerosol particles. <i>Science Advances</i> , 2020 , 6, eaay4945	14.3	28	
304	Peroxy radical chemistry and the volatility basis set. Atmospheric Chemistry and Physics, 2020, 20, 1183-	-16989	34	
303	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. <i>Environmental Science & Environmental Sci</i>	10.3	26	
302	Molecular understanding of new-particle formation from alpha-pinene between $50\mathrm{C}$ and $25\mathrm{C}$ 2020 ,		1	
301	Enhanced growth rate of atmospheric particles from sulfuric acid. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7359-7372	6.8	21	
300	Moving beyond Fine Particle Mass: High-Spatial Resolution Exposure to Source-Resolved Atmospheric Particle Number and Chemical Mixing State. <i>Environmental Health Perspectives</i> , 2020 , 128, 17009	8.4	10	
299	CloudAerosolII urbulence Interactions: Science Priorities and Concepts for a Large-Scale Laboratory Facility. <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, E1026-E1035	6.1	5	
298	Molecular understanding of the suppression of new-particle formation by isoprene. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 11809-11821	6.8	16	
297	Molecular understanding of new-particle formation from <i></i>-pinene between B 0 and +25 °C. Atmospheric Chemistry and Physics, 2020 , 20, 9183-9207	6.8	32	
296	High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25344-25351	11.5	20	
295	Aerosol Optical Tweezers Constrain the Morphology Evolution of Liquid-Liquid Phase-Separated Atmospheric Particles. <i>CheM</i> , 2020 , 6, 204-220	16.2	30	

294	Molecular understanding of the suppression of new-particle formation by isoprene 2020,		1
293	Quantifying errors in the aerosol mixing-state index based on limited particle sample size. <i>Aerosol Science and Technology</i> , 2020 , 54, 1527-1541	3.4	2
292	Molecular Composition and Volatility of Nucleated Particles from Pinene Oxidation between -50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365	10.3	14
291	Molecular identification of organic vapors driving atmospheric nanoparticle growth. <i>Nature Communications</i> , 2019 , 10, 4442	17.4	37
290	Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 3583-3606	4.4	39
289	Formation of Highly Oxygenated Organic Molecules from Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 873-883	3.2	23
288	Using Ionic Liquids To Study the Migration of Semivolatile Organic Vapors in Smog Chamber Experiments. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 3887-3892	2.8	
287	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. <i>Chemical Reviews</i> , 2019 , 119, 3472-3509	68.1	262
286	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 10248-10263	4.4	31
285	Gas-Phase Organic Oxidation Chemistry and Atmospheric Particles 2019 , 199-317		3
285	Gas-Phase Organic Oxidation Chemistry and Atmospheric Particles 2019 , 199-317 Enhanced growth rate of atmospheric particles from sulfuric acid 2019 ,		3
, in the second		16.2	1
284	Enhanced growth rate of atmospheric particles from sulfuric acid 2019 , Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically	16.2	1
284	Enhanced growth rate of atmospheric particles from sulfuric acid 2019 , Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. <i>CheM</i> , 2018 , <i>4</i> , 318-333 Mass accommodation coefficients of fresh and aged biomass-burning emissions. <i>Aerosol Science</i>		32
284 283 282	Enhanced growth rate of atmospheric particles from sulfuric acid 2019 , Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. <i>CheM</i> , 2018 , 4, 318-333 Mass accommodation coefficients of fresh and aged biomass-burning emissions. <i>Aerosol Science and Technology</i> , 2018 , 52, 300-309		1 32 8
284 283 282	Enhanced growth rate of atmospheric particles from sulfuric acid 2019, Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. CheM, 2018, 4, 318-333 Mass accommodation coefficients of fresh and aged biomass-burning emissions. Aerosol Science and Technology, 2018, 52, 300-309 Air Pollution and Air Quality 2018, 151-176 Measurementihodel comparison of stabilized Criegee intermediateland highly oxygenated	3.4	1 32 8 7
284 283 282 281	Enhanced growth rate of atmospheric particles from sulfuric acid 2019, Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. CheM, 2018, 4, 318-333 Mass accommodation coefficients of fresh and aged biomass-burning emissions. Aerosol Science and Technology, 2018, 52, 300-309 Air Pollution and Air Quality 2018, 151-176 Measurementihodel comparison of stabilized Criegee intermediateland highly oxygenated molecule productionlinithelcLOUDlichamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380 Multi-generation chemical aging of <i></i> -pinene ozonolysis products by reactions	3.4	1 32 8 7

276	Cloud condensation nuclei activity and droplet formation of primary and secondary organic aerosol mixtures. <i>Aerosol Science and Technology</i> , 2018 , 52, 242-251	3.4	7
275	Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 617	1 ⁶ 8 1-6186	₅ 7
274	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127	11.5	73
273	Emerging investigator series: determination of biphasic core-shell droplet properties using aerosol optical tweezers. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1512-1523	4.3	10
272	Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 9845-9860	6.8	17
271	Pressure Stabilization of Criegee Intermediates Formed from Symmetric trans-Alkene Ozonolysis. Journal of Physical Chemistry A, 2018 , 122, 9426-9434	2.8	5
270	Particle wall-loss correction methods in smog chamber experiments. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 6577-6588	4	29
269	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. <i>Science Advances</i> , 2018 , 4, eaau5363	14.3	105
268	Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area. <i>Environmental Science & Environmental Science & Envi</i>	10.3	30
267	A dual-chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 6043-6058	4.4	32
266	Evaporation rate of particles in the vaporizer of the Aerodyne aerosol mass spectrometer. <i>Aerosol Science and Technology</i> , 2017 , 51, 501-508	3.4	5
265	Collection efficiency of <i></i>-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 1139-1154	4	13
264	Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors 2017 ,		1
263	Causes and importance of new particle formation in the present-day and preindustrial atmospheres. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 8739-8760	4.4	119
262	Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 6036-6045	2.8	29
261	Reducing secondary organic aerosol formation from gasoline vehicle exhaust. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6984-6989	11.5	73
260	The role of ions in new particle formation in the CLOUD chamber. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 15181-15197	6.8	32
259	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2103-2162	6.8	206

258 Dynamic consideration of smog chamber experiments. *Atmospheric Chemistry and Physics*, **2017**, 17, 1001698100166

257	Evaporation of sulfate aerosols at low relative humidity. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 8923-8938	6.8	7
256	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation 2017 ,		1
255	Multi-generation Chemical Aging of Pinene Ozonolysis Products by Reactions with OH 2017 ,		1
254	Emulsified and Liquid-Liquid Phase-Separated States of Pinene Secondary Organic Aerosol Determined Using Aerosol Optical Tweezers. <i>Environmental Science & Determined Using Aerosol Optical Tweezers</i> . <i>Environmental Science & Determined Using Aerosol Optical Tweezers</i> .	-12163	3 ⁴⁸
253	Evaporation of sulphate aerosols at low relative humidity 2016,		1
252	Urban case studies: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 473-514	3.6	1
251	Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. <i>Aerosol Science and Technology</i> , 2016 , 50, 1017-1032	3.4	10
250	Mixing of secondary organic aerosols versus relative humidity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12649-12654	11.5	79
249	Global atmospheric particle formation from CERN CLOUD measurements. <i>Science</i> , 2016 , 354, 1119-112	433.3	207
248	The effect of acid-base clustering and ions on the growth of atmospheric nano-particles. <i>Nature Communications</i> , 2016 , 7, 11594	17.4	88
247	A two-dimensional volatility basis set IPart 3: Prognostic modeling and NO_{<i>x</i>} dependence. <i>Atmospheric Chemistry and Physics</i> , 2016 , 123-134	6.8	20
246	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of <i>Alt;/i>-pinene. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6495-6509	6.8	51
245	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1693-1712	6.8	35
244	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 293-304	6.8	19
243	Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3651-3664	6.8	11
242	Observation of viscosity transition in <i></i>-pinene secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4423-4438	6.8	47
241	Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. <i>Scientific Reports</i> , 2016 , 6, 28815	4.9	88

(2016-2016)

240	Vapor wall loss of semi-volatile organic compounds in a Teflon chamber. <i>Aerosol Science and Technology</i> , 2016 , 50, 822-834	3.4	69
239	Estimating ambient particulate organic carbon concentrations and partitioning using thermal optical measurements and the volatility basis set. <i>Aerosol Science and Technology</i> , 2016 , 50, 638-651	3.4	9
238	Single-particle measurements of phase partitioning between primary and secondary organic aerosols. <i>Faraday Discussions</i> , 2016 , 189, 31-49	3.6	9
237	James G. Anderson Tribute. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 1317-9	2.8	
236	Uptake of Semivolatile Secondary Organic Aerosol Formed from Pinene into Nonvolatile Polyethylene Glycol Probe Particles. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 1459-67	2.8	6
235	Can Highly Oxidized Organics Contribute to Atmospheric New Particle Formation?. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 1452-8	2.8	30
234	Where Did This Particle Come From? Sources of Particle Number and Mass for Human Exposure Estimates. <i>Issues in Environmental Science and Technology</i> , 2016 , 35-71	0.7	5
233	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol 2016 ,		3
232	Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 6117-6137	4	25
231	Timescales of mixing and of chemistry: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 253-76	3.6	
230	Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 1752-1775	4.4	80
229	Numerical modelling strategies for the urban atmosphere: general discussion. <i>Faraday Discussions</i> , 2016 , 189, 635-60	3.6	
228	Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 1736-1751	4.4	28
227	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 3036-3049	4.4	13
226	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 12,377	4.4	54
225	Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 2173-8	2.8	23
224	The role of low-volatility organic compounds in initial particle growth in the atmosphere. <i>Nature</i> , 2016 , 533, 527-31	50.4	388
223	Ion-induced nucleation of pure biogenic particles. <i>Nature</i> , 2016 , 533, 521-6	50.4	377

222	Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. <i>Environmental Science & Environmental Science & Envir</i>	10 ^{0.3}	43
221	⊕inene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 2569-82	2.8	79
220	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058	3 ^{11.5}	79
219	Wall effects in smog chamber experiments: A model study. <i>Aerosol Science and Technology</i> , 2016 , 50, 1180-1200	3.4	24
218	The interplay between assumed morphology and the direct radiative effect of light-absorbing organic aerosol. <i>Geophysical Research Letters</i> , 2016 , 43, 8735-8743	4.9	9
217	Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements. <i>Environmental Science & Environmental Scie</i>	24-32	19
216	Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures. <i>Chemical Reviews</i> , 2015 , 115, 4115	5-56 ^{.1}	138
215	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 253-272	6.8	563
214	Photochemical aging of secondary organic aerosols generated from the photooxidation of polycyclic aromatic hydrocarbons in the gas-phase. <i>Environmental Science & Environmental Science & Environment</i>	10.3	32
213	Improvement of simulation of fine inorganic PM levels through better descriptions of coarse particle chemistry. <i>Atmospheric Environment</i> , 2015 , 102, 274-281	5.3	10
212	Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 10,285	4.4	93
211	Experimental investigation of ionIbn recombination under atmospheric conditions. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7203-7216	6.8	33
210	Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8301-8313	6.8	27
209	Adsorptive uptake of water by semisolid secondary organic aerosols. <i>Geophysical Research Letters</i> , 2015 , 42, 3063-3068	4.9	113
208	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ 5O ₄ H ₂ O) and ternary (H ₂ ONH ₄ H ₂ ONH ₃ ONH <sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>ONH<sub>< td=""><td>6.8 sub></td><td>22 ;;)</td></sub><></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	6.8 sub>	22 ;;)
207	system. Atmospheric Chemistry and Physics, 2015 , 15, 10701-10721 Elemental composition and clustering behaviour of pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015 , 15, 4145-4159	6.8	14
206	On the composition of ammoniaBulfuric-acid ion clusters during aerosol particle formation. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 55-78	6.8	68
205	Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments. <i>Environmental Science & Emp;</i> Technology, 2015 , 49, 2245-54	10.3	44

204	Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , n/	a-n 1 /a	11
203	Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. <i>Science</i> , 2014 , 344, 717-21	33.3	375
202	Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15019-24	11.5	155
201	Organosulfates from pinene and isoprene over the Pearl River Delta, South China: seasonal variation and implication in formation mechanisms. <i>Environmental Science & Environmental Science & Environm</i>	10.3	70
200	Brownness of organics in aerosols from biomass burning linked to their black carbon content. <i>Nature Geoscience</i> , 2014 , 7, 647-650	18.3	314
199	Oligomer formation within secondary organic aerosols: equilibrium and dynamic considerations. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3691-3701	6.8	50
198	Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4661-4678	6.8	128
197	Testing secondary organic aerosol models using smog chamber data for complex precursor mixtures: influence of precursor volatility and molecular structure. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5771-5780	6.8	17
196	Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO₂ and organic acids. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12	14 ^{6:8} 21	1536
195	A naming convention for atmospheric organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 58	255583	9 68
194	Near-unity mass accommodation coefficient of organic molecules of varying structure. <i>Environmental Science & Environmental Sc</i>	10.3	65
193	Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10473-8	11.5	148
192	Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters. <i>Environmental Science & Environmental Sc</i>	10.3	40
191	Volatility and aging of atmospheric organic aerosol. <i>Topics in Current Chemistry</i> , 2014 , 339, 97-143		56
190	Organic aerosol mixing observed by single-particle mass spectrometry. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 13935-45	2.8	48
189	Atmospheric nanoparticles and climate change. AICHE Journal, 2013, 59, 4006-4019	3.6	8
188	Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. <i>Nature</i> , 2013 , 502, 359-63	50.4	585

186	How do organic vapors contribute to new-particle formation?. Faraday Discussions, 2013, 165, 91-104	3.6	84
185	Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions. <i>Environmental Science & Technology</i> , 2013 , 47, 12886-93	10.3	61
184	Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. <i>Environmental Science & Environmental & Env</i>	10.3	99
183	Role of organics in particle nucleation: From the lab to global model 2013 ,		1
182	Two-dimensional volatility basis set modeling of pinanediol oxidation in the CLOUD experiment 2013 ,		1
181	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 17223-8	11.5	249
180	Photo-oxidation of pinonaldehyde at low NO_x: from chemistry to organic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3227-3236	6.8	24
179	Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7683-7693	6.8	231
178	Evolution of particle composition in CLOUD nucleation experiments. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5587-5600	6.8	25
177	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. <i>Environmental Chemistry</i> , 2013 , 10, 151	3.2	85
176	Organic aerosol yields from pinene oxidation: bridging the gap between first-generation yields and aging chemistry. <i>Environmental Science & Environmental Science & Environme</i>	10.3	27
175	Volatility of organic molecular markers used for source apportionment analysis: measurements and implications for atmospheric lifetime. <i>Environmental Science & Environmental Environmental</i>	10.3	70
174	Simulations of smog-chamber experiments using the two-dimensional volatility basis set: linear oxygenated precursors. <i>Environmental Science & Environmental Science & Environ</i>	10.3	9
173	Photochemical aging of pinene secondary organic aerosol: effects of OH radical sources and photolysis. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5932-40	2.8	84
172	Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes. <i>Environmental Science & Environmental & Environment</i>	10.3	134
171	Nature of the chemical bond in transition: dissection of radical-molecule reactivity. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 6303-11	2.8	1
170	MRCISD studies of the dissociation of vinylhydroperoxide, CH2CHOOH: there is a saddle point. Journal of Physical Chemistry A, 2012 , 116, 6823-30	2.8	44
169	OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 647-656	4	90

168	The contribution of organics to atmospheric nanoparticle growth. <i>Nature Geoscience</i> , 2012 , 5, 453-458	18.3	282
167	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13503-8	11.5	201
166	Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid has mass spectrometric study of SOA aging. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1483-1496	6.8	162
165	Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10797-10816	6.8	71
164	A two-dimensional volatility basis set Part 2: Diagnostics of organic-aerosol evolution. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 615-634	6.8	365
163	Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust. <i>Atmospheric Chemistry and Physics</i> , 2012, 12, 9025-9040	6.8	23
162	Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	88
161	2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 161-6	2.8	48
160	Adventures in ozoneland: down the rabbit-hole. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 10848-57	7 3.6	145
159	Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. <i>Nature Chemistry</i> , 2011 , 3, 133-9	17.6	689
159 158		17.6 2.8	689
	Nature Chemistry, 2011, 3, 133-9 Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.		
158	Nature Chemistry, 2011, 3, 133-9 Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Journal of Physical Chemistry A, 2011, 115, 4381-7 Understanding evolution of product composition and volatility distribution through in-situ GC & lt;b> GC analysis: a case study of longifolene ozonolysis. Atmospheric Chemistry and	2.8	64
158	Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Journal of Physical Chemistry A, 2011, 115, 4381-7 Understanding evolution of product composition and volatility distribution through in-situ GC GC analysis: a case study of longifolene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 5335-5346	2.8	64
158 157 156	Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Journal of Physical Chemistry A, 2011, 115, 4381-7 Understanding evolution of product composition and volatility distribution through in-situ GC GC analysis: a case study of longifolene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 5335-5346 Water content of aged aerosol. Atmospheric Chemistry and Physics, 2011, 11, 911-920 Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmospheric	2.86.86.8	64 32 97
158 157 156	Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Journal of Physical Chemistry A, 2011, 115, 4381-7 Understanding evolution of product composition and volatility distribution through in-situ GC GC analysis: a case study of longifolene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 5335-5346 Water content of aged aerosol. Atmospheric Chemistry and Physics, 2011, 11, 911-920 Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmospheric Chemistry and Physics, 2011, 11, 10553-10563 Volatility of secondary organic aerosol during OH radical induced ageing. Atmospheric Chemistry	2.86.86.86.8	64 32 97 75
158 157 156 155	Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Journal of Physical Chemistry A, 2011, 115, 4381-7 Understanding evolution of product composition and volatility distribution through in-situ GC GC analysis: a case study of longifolene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 5335-5346 Water content of aged aerosol. Atmospheric Chemistry and Physics, 2011, 11, 911-920 Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmospheric Chemistry and Physics, 2011, 11, 10553-10563 Volatility of secondary organic aerosol during OH radical induced ageing. Atmospheric Chemistry and Physics, 2011, 11, 11055-11067 Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmospheric	2.86.86.86.8	64 32 97 75 60

150	Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4135-4147	6.8	62
149	Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7859-7873	6.8	71
148	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3303-3318	6.8	421
147	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9019-9036	6.8	132
146	Particle-phase chemistry of secondary organic material: modeled compared to measured O:C and H:C elemental ratios provide constraints. <i>Environmental Science & Environmental </i>	10.3	138
145	Secondary organic aerosol coating of synthetic metal-oxide nanoparticles. <i>Environmental Science</i> & amp; Technology, 2011 , 45, 4689-95	10.3	12
144	Evaluating the mixing of organic aerosol components using high-resolution aerosol mass spectrometry. <i>Environmental Science & Environmental Science & </i>	10.3	41
143	Relating cloud condensation nuclei activity and oxidation level of pinene secondary organic aerosols. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		51
142	A review of the anthropogenic influence on biogenic secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 321-343	6.8	246
141	Effect of the OH Radical Scavenger Hydrogen Peroxide on Secondary Organic Aerosol Formation from Pinene Ozonolysis. <i>Aerosol Science and Technology</i> , 2011 , 45, 696-700	3.4	21
141		3.4	21
	From Pinene Ozonolysis. <i>Aerosol Science and Technology</i> , 2011 , 45, 696-700 OH clock determination by proton transfer reaction mass spectrometry at an environmental	3·4 6.8	
140	from Pinene Ozonolysis. Aerosol Science and Technology, 2011, 45, 696-700 OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber 2011, Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass		3
140	from Pinene Ozonolysis. Aerosol Science and Technology, 2011, 45, 696-700 OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber 2011, Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641 Updating the conceptual model for fine particle mass emissions from combustion systems. Journal	6.8	3 749
140 139 138	From Pinene Ozonolysis. Aerosol Science and Technology, 2011, 45, 696-700 OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber 2011, Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641 Updating the conceptual model for fine particle mass emissions from combustion systems. Journal of the Air and Waste Management Association, 2010, 60, 1204-22 Organic Aerosol Speciation: Intercomparison of Thermal Desorption Aerosol GC/MS (TAG) and	6.8	3 749 103
140 139 138	OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber 2011, Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641 Updating the conceptual model for fine particle mass emissions from combustion systems. Journal of the Air and Waste Management Association, 2010, 60, 1204-22 Organic Aerosol Speciation: Intercomparison of Thermal Desorption Aerosol GC/MS (TAG) and Filter-Based Techniques. Aerosol Science and Technology, 2010, 44, 141-151 The HOOH UV spectrum: importance of the transition dipole moment and torsional motion from semiclassical calculations on an ab initio potential energy surface. Journal of Chemical Physics, 2010,	6.8 2.4 3.4	3 749 103 18
140 139 138 137	OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber 2011, Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641 Updating the conceptual model for fine particle mass emissions from combustion systems. Journal of the Air and Waste Management Association, 2010, 60, 1204-22 Organic Aerosol Speciation: Intercomparison of Thermal Desorption Aerosol GC/MS (TAG) and Filter-Based Techniques. Aerosol Science and Technology, 2010, 44, 141-151 The HOOH UV spectrum: importance of the transition dipole moment and torsional motion from semiclassical calculations on an ab initio potential energy surface. Journal of Chemical Physics, 2010, 132, 084304 Humidity influence on gas-particle phase partitioning of Ppinene + O3 secondary organic aerosol.	6.8 2.4 3.4 3.9	3 749 103 18

1	132	Secondary organic aerosol formation from high-NO(x) photo-oxidation of low volatility precursors: n-alkanes. <i>Environmental Science & Environmental Sc</i>	10.3	156
1	131	A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol. <i>Environmental Science & Environmental </i>	10.3	120
1	130	Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	71
1	29	Functionalization vs. fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 13975-82	3.6	51
1	28	Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2257-2267	6.8	77
1	27	Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment © 2008. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4167-4186	6.8	109
1	26	Organic aerosol formation in citronella candle plumes. Air Quality, Atmosphere and Health, 2010, 3, 131-	1538	3
1	25	Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics. <i>Atmospheric Environment</i> , 2010 , 44, 597-607	5.3	122
1	24	Atmospheric organic particulate matter: From smoke to secondary organic aerosol. <i>Atmospheric Environment</i> , 2009 , 43, 94-106	5.3	292
1	23	High time-resolved measurements of organic air toxics in different source regimes. <i>Atmospheric Environment</i> , 2009 , 43, 6205-6217	5.3	17
1	22	Rate constants of nine C6-C9 alkanes with OH from 230 to 379 K: chemical tracers for [OH]. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 5030-8	2.8	19
1	121	Intermediate-volatility organic compounds: a potential source of ambient oxidized organic aerosol. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2009 , 43, 4744-9	10.3	88
1	2 0	Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. <i>Environmental Science & Environmental Sci</i>	10.3	82
1	19	Mixing and phase partitioning of primary and secondary organic aerosols. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	45
1	18	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9	33.3	2767
1	17	Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. <i>Environmental Science & Environmental Science</i>	10.3	113
1	116	Reactivity of oleic acid in organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxidation. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7951-62	3.6	29
1	15	Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. <i>Physical Chemistry Chemical Physics</i> 2009 11 7810-8	3.6	56

114	Apportioning black carbon to sources using highly time-resolved ambient measurements of organic molecular markers in Pittsburgh. <i>Atmospheric Environment</i> , 2009 , 43, 3941-3950	5.3	37
113	The formation, properties and impact of secondary organic aerosol: current and emerging issues. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5155-5236	6.8	2861
112	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1263-1277	6.8	381
111	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 2227-2240	6.8	168
110	High formation of secondary organic aerosol from the photo-oxidation of toluene. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 2973-2986	6.8	221
109	Parameterization of secondary organic aerosol mass fractions from smog chamber data. <i>Atmospheric Environment</i> , 2008 , 42, 2276-2299	5.3	66
108	Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. <i>Atmospheric Environment</i> , 2008 , 42, 7439-7451	5.3	241
107	Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. <i>Journal of Geophysical Research</i> , 2008 , 113,		196
106	The kinetics of tetramethylethene ozonolysis: decomposition of the primary ozonide and subsequent product formation in the condensed phase. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 1353	3 5 -81	29
105	Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust. <i>Environmental Science & Environmental Science &</i>	10.3	62
104	Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for meat cooking emissions. <i>Environmental Science & Environmental Science </i>	10.3	22
103	Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction. <i>Environmental Science & Environmental Science & Environ</i>	10.3	32
102	Effect of NOx on secondary organic aerosol concentrations. <i>Environmental Science & Environmental Scie</i>	10.3	121
101	Constraining Particle Evolution from Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements. <i>Aerosol Science and Technology</i> , 2008 , 42, 1001-1015	3.4	77
100	Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1139-1152	6.8	95
99	Secondary organic aerosol from limona ketone: insights into terpene ozonolysis via synthesis of key intermediates. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 2991-8	3.6	34
98	Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. <i>Environmental Science & Environmental Science & Environme</i>	10.3	181
97	Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies. <i>Environmental Science & Environmental &</i>	10.3	74

96	Rethinking organic aerosols: semivolatile emissions and photochemical aging. <i>Science</i> , 2007 , 315, 1259	-63 3.3	1452
95	Aging of organic aerosol: bridging the gap between laboratory and field studies. <i>Annual Review of Physical Chemistry</i> , 2007 , 58, 321-52	15.7	427
94	Ozonolysis of Dinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields). <i>Journal of Geophysical Research</i> , 2007 , 112,		138
93	Laboratory measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate constants approach. <i>Journal of Geophysical Research</i> , 2007 , 112,		28
92	Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	101
91	Insights into the primaryBecondary and regionalIbcal contributions to organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. <i>Atmospheric Environment</i> , 2007 , 41, 7414-7433	5.3	70
90	Ozonolysis of Dinene: parameterization of secondary organic aerosol mass fraction. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 3811-3821	6.8	139
89	Cloud condensation nuclei activation of limited solubility organic aerosol. <i>Atmospheric Environment</i> , 2006 , 40, 605-617	5.3	109
88	Contribution of motor vehicle emissions to organic carbon and fine particle mass in Pittsburgh, Pennsylvania: Effects of varying source profiles and seasonal trends in ambient marker concentrations. <i>Atmospheric Environment</i> , 2006 , 40, 8002-8019	5.3	78
87	Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. <i>Journal of Geophysical Research</i> , 2006 , 111,		98
86	The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction. <i>Faraday Discussions</i> , 2006 , 133, 137-56; discussion 191-230, 449-52	3.6	87
85	Coupled partitioning, dilution, and chemical aging of semivolatile organics. <i>Environmental Science</i> & amp; Technology, 2006 , 40, 2635-43	10.3	1073
84	Constraining the mechanism and kinetics of OH + NO2 and HO2 + NO using the multiple-well master equation. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6898-911	2.8	29
83	Source apportionment of molecular markers and organic aerosol. 2. Biomass smoke. <i>Environmental Science & Environmental Scienc</i>	10.3	94
82	Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	153
81	Investigation of alpha-pinene + ozone secondary organic aerosol formation at low total aerosol mass. <i>Environmental Science & Technology</i> , 2006 , 40, 3536-43	10.3	178
80	Secondary organic aerosol formation from limonene ozonolysis: homogeneous and heterogeneous influences as a function of NO(x). <i>Journal of Physical Chemistry A</i> , 2006 , 110, 11053-63	2.8	131
79	Source apportionment of molecular markers and organic aerosol1. Polycyclic aromatic hydrocarbons and methodology for data visualization. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	123

78	Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. <i>Environmental Science & Environmental Science & Environ</i>	10.3	261
77	Critical factors determining the variation in SOA yields from terpene ozonolysis: a combined experimental and computational study. <i>Faraday Discussions</i> , 2005 , 130, 295-309; discussion 363-86, 519	- 3 :6	83
76	Secondary organic aerosol production from terpene ozonolysis. 1. Effect of UV radiation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	150
75	Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. <i>Journal of Geophysical Research</i> , 2005 , 110,		131
74	Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. <i>Journal of Geophysical Research</i> , 2005 , 110, n/a-n/a		89
73	Competitive oxidation in atmospheric aerosols: The case for relative kinetics. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	22
72	Deconstructing experimental rate constant measurements: Obtaining intrinsic reaction parameters, kinetic isotope effects, and tunneling coefficients from kinetic data for OH+methane, ethane and cyclohexane. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2005 , 176, 238-249	4.7	7
71	Hydrogen and helium pressure broadening of water transitions in the 380 region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 83, 183-191	2.1	25
70	Fitting multiple datasets in kinetics: n-butane + OH -lproducts. <i>International Journal of Chemical Kinetics</i> , 2004 , 36, 259-272	1.4	10
69	On the Mechanism for Nitrate Formation via the Peroxy Radical + NO Reaction. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 9082-9095	2.8	75
68	Cycloalkene ozonolysis: collisionally mediated mechanistic branching. <i>Journal of the American Chemical Society</i> , 2004 , 126, 12363-73	16.4	70
67	Ozonolysis Fragment Quenching by Nitrate Formation: The Pressure Dependence of Prompt OH Radical Formation. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 9096-9104	2.8	56
66	Reaction barriers: origin and evolution. <i>Chemical Reviews</i> , 2003 , 103, 4593-604	68.1	42
65	Pressure broadening coefficients for rotational transitions of water in the 380B00cml range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72, 775-782	2.1	13
64	Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 8-1		137
63	Gas-phase ozonolysis of alkenes: formation of OH from anti carbonyl oxides. <i>Journal of the American Chemical Society</i> , 2002 , 124, 8518-9	16.4	100
62	Mechanism of HO Formation in the Gas-Phase Ozone-Alkene Reaction. 1. Direct, Pressure-Dependent Measurements of Prompt OH Yields. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1554-1560	2.8	154
61	Mechanism of HOx Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus Thermal Dissociation of Carbonyl Oxides to Form OH. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 4446-4457	2.8	192

60	Accurate, direct measurements of oh yields from gas-phase ozone-alkene reactions using an in situ LIF Instrument. <i>Geophysical Research Letters</i> , 2001 , 28, 3863-3866	4.9	45
59	Near-Field Influence on Barrier Evolution in Symmetric Atom Transfer Reactions: A New Model for Two-State Mixing <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1498-1506	2.8	11
58	Constraining the Mechanism of OH + NO2 Using Isotopically Labeled Reactants: Experimental Evidence for HOONO Formation <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1515-1520	2.8	40
57	Revisiting the Hammond Postulate: The Role of Reactant and Product Ionic States in Regulating Barrier Heights, Locations, and Transition State Frequencies Journal of Physical Chemistry A, 2001 , 105, 1489-1497	2.8	52
56	High-Pressure Flow Reactor Product Study of the Reactions of HOx+ NO2: The Role of Vibrationally Excited Intermediates <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1507-1514	2.8	31
55	Multiple Excited States in a Two-State Crossing Model: Predicting Barrier Height Evolution for H + Alkene Addition Reactions. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 4458-4468	2.8	30
54	An Experimental Method for Testing Reactivity Models: A High-Pressure Discharge Flow Study of H + Alkene and Haloalkene Reactions. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 5254-5264	2.8	16
53	Temperature and pressure dependent kinetics of the gas-phase reaction of the hydroxyl radical with nitrogen dioxide. <i>Geophysical Research Letters</i> , 1999 , 26, 687-690	4.9	66
52	Fourier Transform Ultraviolet Spectroscopy of the A 2B/2 <- X 2B/2 Transition of BrOD <i>Journal of Physical Chemistry A</i> , 1999 , 103, 8935-8945	2.8	160
51	Direct observation of OH production from the ozonolysis of olefins. <i>Geophysical Research Letters</i> , 1998 , 25, 59-62	4.9	132
50	Testing Frontier Orbital Control: Kinetics of OH with Ethane, Propane, and Cyclopropane from 180 to 360K. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 9847-9857	2.8	57
49	Predicting RadicalMolecule Barrier Heights: The Role of the Ionic Surface. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 3923-3933	2.8	79
48	New Rate Constants for Ten OH Alkane Reactions from 300 to 400 K: An Assessment of Accuracy. Journal of Physical Chemistry A, 1998 , 102, 3121-3126	2.8	69
47	Isotope Specific Kinetics of Hydroxyl Radical (OH) with Water (H2O): Testing Models of Reactivity and Atmospheric Fractionation. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 1494-1500	2.8	129
46	Comment on: The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN Field Campaign(by Hofzumahaus et al. and Intercomparison of tropospheric OH radical measurements by multiple folded long-path laser absorption and laser	4.9	31
45	induced fluorescenceiby Brauers et al <i>Geophysical Research Letters</i> , 1997 , 24, 3037-3038 High-pressure flow study of the reactions OH + NOx -kHONOx: Errors in the falloff region. <i>Journal of Geophysical Research</i> , 1997 , 102, 6159-6168		84
44	Free-Radical Kinetics at High Pressure: A Mathematical Analysis of the Flow Reactor. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 5821-5838		48
43	Reaction Modulation Spectoscopy: A New Approach to Quantifying Reaction Mechanisms <i>The Journal of Physical Chemistry</i> , 1996 , 100, 17855-17861		15

42	Ozone observations and a model of marine boundary layer photochemistry during SAGA 3. <i>Journal of Geophysical Research</i> , 1993 , 98, 16955	101
41	In situ nonmethane hydrocarbon measurements on SAGA 3. <i>Journal of Geophysical Research</i> , 1993 , 98, 16915	74
40	Nonmethane hydrocarbon chemistry in the remote marine boundary layer. <i>Journal of Geophysical Research</i> , 1990 , 95, 18387	82
39	Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere. <i>Nature</i> , 1985 , 318, 347-349	97
38	New particle formation in the sulfuric acid-dimethy lamine-water system: Reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model	2
37	Anthropogenic influence on biogenic secondary organic aerosol	2
36	Water content of aged aerosol	2
35	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics	5
34	Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber	3
33	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events	3
32	Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid 🗈 mass spectrometric study of SOA aging	10
31	Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis	2
30	A two-dimensional volatility basis set IPart 2: Diagnostics of organic-aerosol evolution	5
29	Organic condensation 🗈 vital link connecting aerosol formation to climate forcing	2
28	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber	6
27	Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set	1
26	Evolution of particle composition in CLOUD nucleation experiments	1
25	Photo-oxidation of pinonaldehyde at low NO _x : from chemistry to organic aerosol formation	3

24	Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies	1
23	Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions	2
22	Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles	9
21	Modeling the influence of precursor volatility and molecular structure on secondary organic aerosol formation using evaporated fuel experiments	1
20	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications	12
19	Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids	7
18	Aging of secondary organic aerosol from small aromatic VOCs: changes in chemical composition, mass yield, volatility and hygroscopicity	8
17	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ -H ₂ O) and ternary (H ₂ SO ₄ -H ₂ O-NH _{3<td>1 gt;) syster</td>}	1 gt;) syster
16	Observation of viscosity transition in pinene secondary organic aerosol	4
15	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of Dinene	2
14	Experimental investigation of ion-ion recombination at atmospheric conditions	2
13	Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions	5
12	Ozonolysis of Dinene: parameterization of secondary organic aerosol mass fraction	2
11	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 1: Measurement and simulation of organic aerosol evolution	7
10	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires [Part 2: Analysis of aerosol mass spectrometer data	6
9	The formation, properties and impact of secondary organic aerosol: current and emerging issues	24
8	High formation of secondary organic aerosol from the photo-oxidation of toluene	3
7	Collection efficiency of ⊕inene secondary organic aerosol particles explored via light scattering single particle aerosol mass spectrometry	2

6	Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment	1
5	Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008	2
4	Fragmentation vs. functionalization: chemical aging and organic aerosol formation	1
3	Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations	1
2	A naming convention for atmospheric organic aerosol	1
1	The driving factors of new particle formation and growth in the polluted boundary layer	3