Halil Durak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8642386/publications.pdf

Version: 2024-02-01

361413 454955 32 984 20 30 citations h-index g-index papers 32 32 32 845 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Hydrothermal liquefaction of Glycyrrhiza glabra L. (Liquorice): Effects of catalyst on variety compounds and chromatographic characterization . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2024, 42, 2471-2484.	2.3	26
2	Characterization of bio-oil and bio-char obtained from black cumin seed by hydrothermal liquefaction: investigation of potential as an energy source. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 3205-3215.	2.3	15
3	Bio-oil and bio-char from lactuca scariola: significance of catalyst and temperature for assessing yield and quality of pyrolysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 1774-1787.	2.3	38
4	The impact of Co addition on neutron-photon protection characteristics of red and yellow clays-based bricks: An experimental study. Progress in Nuclear Energy, 2022, 143, 104047.	2.9	11
5	The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis) Tj ETQq1 1 0.784	43 <u>1</u> 4 rgBT	/Qyerlock 10
6	Improving the performance of nuclear protection of Al2Si2O5(OH)4–KAlSi3O8–SiO2 ceramics with cobalt insertion: an experimental study. Journal of the Australian Ceramic Society, 2020, 56, 1595-1607.	1.9	7
7	Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 2020, 309, 123375.	9.6	84
8	Effect of addition of molybdenum on photon and fast neutron radiation shielding properties in ceramics. Ceramics International, 2019, 45, 23681-23689.	4.8	67
9	Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods. Biomass Conversion and Biorefinery, 2019, 9, 459-470.	4.6	38
10	Pyrolysis of black cumin seed: Significance of catalyst and temperature product yields and chromatographic characterization. Journal of Liquid Chromatography and Related Technologies, 2019, 42, 331-350.	1.0	56
11	Trametes versicolor (L.) mushrooms liquefaction in supercritical solvents: Effects of operating conditions on product yields and chromatographic characterization. Journal of Supercritical Fluids, 2018, 131, 140-149.	3.2	17
12	Hydrothermal conversion of biomass (Xanthium strumarium) to energetic materials and comparison with other thermochemical methods. Journal of Supercritical Fluids, 2018, 140, 290-301.	3.2	34
13	Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. Journal of Supercritical Fluids, 2018, 140, 53-61.	3.2	35
14	Bio-oil production via subcritical hydrothermal liquefaction of biomass. AIP Conference Proceedings, 2017, , .	0.4	0
15	Catalytic effects of borax and iron(III) chloride on supercritical liquefaction of Anchusa azurea with methanol and isopropanol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1739-1749.	2.3	3
16	Bio-oil production from biomass via supercritical fluid extraction. AIP Conference Proceedings, 2016, ,	0.4	3
17	Effect of process parameters on supercritical liquefaction of Xanthium strumarium for bio-oil production. Journal of Supercritical Fluids, 2016, 115, 42-53.	3.2	13
18	Effects of catalysts on liquefaction of Agaricus versicolor (L.). AIP Conference Proceedings, 2016, , .	0.4	0

#	Article	IF	CITATION
19	Pyrolysis of <i>Xanthium strumarium </i> ii a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1400-1409.	2.3	43
20	Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization. Bioresource Technology, 2016, 205, 7-14.	9.6	59
21	Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L Journal of Supercritical Fluids, 2016, 108, 123-135.	3.2	38
22	Bio-oil production via catalytic supercritical liquefaction of Syrian mesquite (Prosopis farcta). Journal of Supercritical Fluids, 2016, 109, 26-34.	3.2	32
23	Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. Journal of Supercritical Fluids, 2016, 111, 179-198.	3.2	36
24	Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado seeds. Research on Chemical Intermediates, 2015, 41, 8067-8097.	2.7	44
25	Assessment of avocado seeds (<i>Persea americana</i>) to produce bioâ€oil through supercritical liquefaction. Biofuels, Bioproducts and Biorefining, 2015, 9, 231-257.	3.7	23
26	Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes. Energy Conversion and Management, 2015, 99, 282-298.	9.2	41
27	Thermochemical conversion of Datura stramonium L. by supercritical liquefaction and pyrolysis processes. Journal of Supercritical Fluids, 2015, 102, 98-114.	3.2	42
28	Optimization of the Dissolution of Tincal Ore in Phosphoric Acid Solutions at High Temperatures. Chemical Engineering Communications, 2015, 202, 245-251.	2.6	5
29	Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. Journal of Analytical and Applied Pyrolysis, 2015, 111, 156-172.	5.5	44
30	Bio-oil production from Glycyrrhiza glabra through supercritical fluid extraction. Journal of Supercritical Fluids, 2014, 95, 373-386.	3.2	26
31	Hydroxyapatite-nanosphere supported ruthenium(0) nanoparticle catalyst for hydrogen generation from ammonia-borane solution: kinetic studies for nanoparticle formation and hydrogen evolution. RSC Advances, 2014, 4, 28947-28955.	3.6	35
32	Effects of catalysts and solvents on liquefaction of Onopordum heteracanthum for production of bio-oils. Bioresource Technology, 2014, 166, 309-317.	9.6	47