Ruth M Gschwind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8642042/publications.pdf

Version: 2024-02-01

128 papers 5,562 citations

76196 40 h-index 95083 68 g-index

150 all docs

150 docs citations

150 times ranked

5569 citing authors

#	Article	IF	CITATIONS
1	Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 2011, 56, 3926-3933.	2.6	355
2	Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human $\hat{I}^3\hat{I}'T$ cells in Escherichia coli. FEBS Letters, 2001, 509, 317-322.	1.3	305
3	Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics. Journal of Controlled Release, 2010, 142, 221-228.	4.8	221
4	Selective Single C(sp ³)–F Bond Cleavage in Trifluoromethylarenes: Merging Visible-Light Catalysis with Lewis Acid Activation. Journal of the American Chemical Society, 2017, 139, 18444-18447.	6.6	188
5	1,8-Bis(tetramethylguanidino)naphthalene (TMGN): A New, Superbasic and Kinetically Active "Proton Sponge― Chemistry - A European Journal, 2002, 8, 1682-1693.	1.7	174
6	The Elusive Enamine Intermediate in Prolineâ€Catalyzed Aldol Reactions: NMR Detection, Formation Pathway, and Stabilization Trends. Angewandte Chemie - International Edition, 2010, 49, 4997-5003.	7.2	155
7	The Photocatalyzed Aza-Henry Reaction of <i>N</i> -Aryltetrahydroisoquinolines: Comprehensive Mechanism, H ^{-à€¢} - versus H ⁺ -Abstraction, and Background Reactions. Journal of the American Chemical Society, 2016, 138, 11860-11871.	6.6	138
8	Highly diastereoselective Csp3–Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. Nature Chemistry, 2010, 2, 125-130.	6.6	129
9	LED based NMR illumination device for mechanistic studies on photochemical reactions – Versatile and simple, yet surprisingly powerful. Journal of Magnetic Resonance, 2013, 232, 39-44.	1.2	129
10	Organocuprates and Diamagnetic Copper Complexes: Structures and NMR Spectroscopic Structure Elucidation in Solution. Chemical Reviews, 2008, 108, 3029-3053.	23.0	118
11	BrÃ,nsted Acid Catalysis: Hydrogen Bonding versus Ion Pairing in Imine Activation. Angewandte Chemie - International Edition, 2011, 50, 6364-6369.	7.2	110
12	The Relation between Ion Pair Structures and Reactivities of Lithium Cuprates. Chemistry - A European Journal, 2000, 6, 3060-3068.	1.7	106
13	Formation and Stability of Prolinol and Prolinol Ether Enamines by NMR: Delicate Selectivity and Reactivity Balances and Parasitic Equilibria. Journal of the American Chemical Society, 2011, 133, 7065-7074.	6.6	105
14	NMR-Detection of Cu(III) Intermediates in Substitution Reactions of Alkyl Halides with Gilman Cuprates. Journal of the American Chemical Society, 2007, 129, 11362-11363.	6.6	93
15	Distinct conformational preferences of prolinol and prolinol ether enamines in solution revealed by NMR. Chemical Science, 2011, 2, 1793.	3.7	91
16	Stabilization of Tetrahedral P ₄ and As ₄ Molecules as Guests in Polymeric and Spherical Environments. Angewandte Chemie - International Edition, 2013, 52, 10896-10899.	7.2	91
17	Automated backbone assignment of labeled proteins using the threshold accepting algorithm. Journal of Biomolecular NMR, 1998, 11, 31-43.	1.6	90
18	LEDâ€Illuminated NMR Studies of Flavinâ€Catalyzed Photooxidations Reveal Solvent Control of the Electronâ€Transfer Mechanism. Angewandte Chemie - International Edition, 2015, 54, 1347-1351.	7.2	89

#	Article	IF	CITATIONS
19	Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake. Organic and Biomolecular Chemistry, 2005, 3, 2691.	1.5	77
20	Direct catalytic transformation of white phosphorus into arylphosphines and phosphonium salts. Nature Catalysis, 2019, 2, 1101-1106.	16.1	72
21	A Nanoâ€sized Supramolecule Beyond the Fullerene Topology. Angewandte Chemie - International Edition, 2014, 53, 13605-13608.	7.2	66
22	Direct Insight into the Ion Pair Equilibria of Lithium Organocuprates by 1H,6Li HOESY Experiments. Organometallics, 2000, 19, 2868-2873.	1.1	64
23	Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Progress in Solid State Chemistry, 2014, 42, 39-39.	3.9	59
24	NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in BrÃ,nsted Acid Catalysis. Journal of the American Chemical Society, 2016, 138, 16345-16354.	6.6	57
25	Enantioselective $[2+2]$ Photocycloaddition via Iminium lons: Catalysis by a Sensitizing Chiral Br $ ilde{A}$,nsted Acid. Journal of the American Chemical Society, 2021, 143, 9350-9354.	6.6	56
26	NMR Investigations on the Proline-Catalyzed Aldehyde Self-Condensation: Mannich Mechanism, Dienamine Detection, and Erosion of the Aldol Addition Selectivity. Journal of Organic Chemistry, 2011, 76, 3005-3015.	1.7	55
27	A New Highly Stereoselective Rearrangement of Acyclic Tertiary Organoboranes:  An Example of Highly Stereoselective Remote Câ°'H Activation. Journal of the American Chemical Society, 1999, 121, 6940-6941.	6.6	54
28	Combined Inâ€Situ Illuminationâ€NMRâ€UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry. Angewandte Chemie - International Edition, 2018, 57, 7493-7497.	7.2	53
29	LEDâ€lluminated NMR Spectroscopy: A Practical Tool for Mechanistic Studies of Photochemical Reactions. ChemPhotoChem, 2019, 3, 984-992.	1.5	53
30	The Proline Enamine Formation Pathway Revisited in Dimethyl Sulfoxide: Rate Constants Determined via NMR. Journal of the American Chemical Society, 2015, 137, 12835-12842.	6.6	52
31	Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 114-115, 86-134.	3.9	52
32	Photoinitiated carbonyl-metathesis: deoxygenative reductive olefination of aromatic aldehydes <i>via</i> photoredox catalysis. Chemical Science, 2019, 10, 4580-4587.	3.7	52
33	Temperature-Dependent Interconversion of Phosphoramiditeâ^'Cu Complexes Detected by Combined Diffusion Studies,31P NMR, and Low-Temperature NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 12310-12317.	6.6	50
34	Tunable Porosities and Shapes of Fullerene‣ike Spheres. Chemistry - A European Journal, 2015, 21, 6208-6214.	1.7	46
35	Glycoinositolphosphosphingolipids (basidiolipids) of higher mushrooms. FEBS Journal, 2001, 268, 1190-1205.	0.2	44
36	Influence of Tetrahydrofuran on Reactivity, Aggregation, and Aggregate Structure of Dimethylcuprates in Diethyl Ether. Journal of the American Chemical Society, 2005, 127, 17335-17342.	6.6	44

#	Article	IF	CITATIONS
37	Dimethyl- and Bis[(trimethylsilyl)methyl]cuprates Show Aggregates Higher than Dimers in Diethyl Ether:  Molecular Diffusion Studies by PFG NMR and Aggregationâ 'Reactivity Correlations. Journal of the American Chemical Society, 2003, 125, 1595-1601.	6.6	43
38	Enamine/Dienamine and BrÃ,nsted Acid Catalysis: Elusive Intermediates, Reaction Mechanisms, and Stereoinduction Modes Based on in Situ NMR Spectroscopy and Computational Studies. Accounts of Chemical Research, 2017, 50, 2936-2948.	7.6	41
39	Brønsted Acid Catalysis—Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes. Journal of the American Chemical Society, 2016, 138, 15965-15971.	6.6	40
40	NMR Detection of Intermolecular NH···OP Hydrogen Bonds between Guanidinium Protons and Bisposphonate Moieties in an Artificial Arginine Receptor. Journal of the American Chemical Society, 2004, 126, 10228-10229.	6.6	39
41	Influence of Copper Salts, Solvents, and Ligands on the Structures of Precatalytic Phosphoramidite Copper Complexes for Conjugate Addition Reactions. Chemistry - A European Journal, 2007, 13, 6691-6700.	1.7	39
42	The Structure of [HSi ₉] ^{3â^'} in the Solid State and Its Unexpected Highly Dynamic Behavior in Solution. Angewandte Chemie - International Edition, 2018, 57, 12956-12960.	7.2	39
43	Poly(Ethylene Glycol) Based Hydrogels for Intraocular Applications. Advanced Engineering Materials, 2007, 9, 1141-1149.	1.6	38
44	Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates. Journal of the American Chemical Society, 2018, 140, 1855-1862.	6.6	38
45	Aggregation Effects in Visibleâ€Light Flavin Photocatalysts: Synthesis, Structure, and Catalytic Activity of 10â€Arylflavins. Chemistry - A European Journal, 2013, 19, 1066-1075.	1.7	37
46	Detection of the Elusive Highly Charged Zintl Ions Si ₄ ^{4â^'} and Sn ₄ ^{4â^'} in Liquid Ammonia by NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 4483-4486.	7.2	37
47	Residual Dipolar Couplings—A Valuable NMR Parameter for Small Organic Molecules. Angewandte Chemie - International Edition, 2005, 44, 4666-4668.	7.2	36
48	A Thioxanthone Sensitizer with a Chiral Phosphoric Acid Binding Site: Properties and Applications in Visible Lightâ€Mediated Cycloadditions. Chemistry - A European Journal, 2020, 26, 5190-5194.	1.7	36
49	Me2CuLi*LiCN in Diethyl Ether Prefers a Homodimeric Core Structure [Me2CuLi]2and Not a Heterodimeric One [Me2CuLi*LiCN]:Â1H,6Li HOE and1H,1H NOE Studies by NMR. Journal of the American Chemical Society, 2001, 123, 7299-7304.	6.6	35
50	Structure Identification of Precatalytic Copper Phosphoramidite Complexes in Solution. Angewandte Chemie - International Edition, 2006, 45, 6391-6394.	7.2	35
51	Stabilization of Proline Enamine Carboxylates by Amine Bases. Chemistry - A European Journal, 2012, 18, 3362-3370.	1.7	33
52	[Co@Sn ₆ Sb ₆] ^{3â°'} : An Off enter Endohedral 12â€Vertex Cluster. Angewandte Chemie - International Edition, 2018, 57, 15359-15363.	7.2	33
53	Remote-Stereocontrol in Dienamine Catalysis: <i>Z</i> -Dienamine Preferences and Electrophile–Catalyst Interaction Revealed by NMR and Computational Studies. Journal of the American Chemical Society, 2016, 138, 9864-9873.	6.6	32
54	Photocatalytic Phenol–Arene C–C and C–O Crossâ€Dehydrogenative Coupling. European Journal of Organic Chemistry, 2017, 2017, 2194-2204.	1.2	32

#	Article	IF	CITATIONS
55	Salt Diffusion Coefficients, Concentration Dependence of Cell Potentials, and Transference Numbers of Lithium Difluoromono(oxalato)borate-Based Solutions. Journal of Chemical & Engineering Data, 2011, 56, 4786-4789.	1.0	31
56	Decrypting Transition States by Light: Photoisomerization as a Mechanistic Tool in Brønsted Acid Catalysis. Journal of the American Chemical Society, 2017, 139, 6752-6760.	6.6	31
57	Residual Dipolar Couplings in Short Peptidic Foldamers: Combined Analyses of Backbone and Sideâ€Chain Conformations and Evaluation of Structure Coordinates of Rigid Unnatural Amino Acids. ChemBioChem, 2009, 10, 440-444.	1.3	30
58	Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations. Journal of the American Chemical Society, 2021, 143, 724-735.	6.6	30
59	Novel glycoinositolphosphosphingolipids, basidiolipids, fromAgaricus. FEBS Journal, 1999, 259, 331-338.	0.2	29
60	NMR-Spectroscopic and Solid-State Investigations of Cometal-Free Asymmetric Conjugate Addition: A Dinuclear Paracyclophaneimine Zinc Methyl Complex. Journal of the American Chemical Society, 2010, 132, 12899-12905.	6.6	29
61	Studies of a photochromic model system using NMR with <i>exâ€situ</i> and <i>inâ€situ</i> irradiation devices. Magnetic Resonance in Chemistry, 2016, 54, 485-491.	1.1	29
62	What is the role of acid–acid interactions in asymmetric phosphoric acid organocatalysis? A detailed mechanistic study using interlocked and non-interlocked catalysts. Chemical Science, 2020, 11, 4381-4390.	3.7	29
63	Photocatalytic Arylation of P ₄ and PH ₃ : Reaction Development Through Mechanistic Insight. Angewandte Chemie - International Edition, 2021, 60, 24650-24658.	7.2	27
64	Organocuprate Conjugate Addition: Structural Features of Diastereomeric and Supramolecular π-Intermediates. Journal of the American Chemical Society, 2008, 130, 13718-13726.	6.6	26
65	Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3â \in 2-substituents in Br \tilde{A}_{j} nsted acid catalysis. Chemical Science, 2019, 10, 10025-10034.	3.7	26
66	Visibleâ€Lightâ€Mediated Liberation and In Situ Conversion of Fluorophosgene. Chemistry - A European Journal, 2019, 25, 361-366.	1.7	26
67	Brønsted acid catalysis – the effect of 3,3′-substituents on the structural space and the stabilization of imine/phosphoric acid complexes. Chemical Science, 2019, 10, 5226-5234.	3.7	25
68	Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein. EMBO Journal, 1998, 17, 4092-4100.	3.5	23
69	¹ H DOSY Spectra of Ligands for Highly Enantioselective Reactions—A Fast and Simple NMR Method to Optimize Catalytic Reaction Conditions. Angewandte Chemie - International Edition, 2010, 49, 2794-2797.	7.2	23
70	Formation of Hydrogen Bonds in Complexes between Dimethylcuprate(I) Anion and Methane, Propane, or Dimethyl Ether. A Theoretical Study. Organometallics, 2006, 25, 5709-5723.	1.1	22
71	Conformations, Conformational Preferences, and Conformational Exchange of N′-SubstitutedN-Acylguanidines: Intermolecular Interactions Hold the Key. Journal of the American Chemical Society, 2010, 132, 11223-11233.	6.6	21
72	Elusive Transmetalation Intermediate in Copper-Catalyzed Conjugate Additions: Direct NMR Detection of an Ethyl Group Attached to a Binuclear Phosphoramidite Copper Complex. Journal of the American Chemical Society, 2014, 136, 11389-11395.	6.6	21

#	Article	IF	Citations
73	Ligand exchange reactions in Cu(iii) complexes: mechanistic insights by combined NMR and DFT studies. Chemical Communications, 2010, 46, 4625.	2.2	20
74	What is your actual catalyst? TMS cleavage rates of diarylprolinol silyl ethers studied by in situ NMR. RSC Advances, 2012, 2, 5941.	1.7	20
75	Facile C=O Bond Splitting of Carbon Dioxide Induced by Metal–Ligand Cooperativity in a Phosphinine Iron(0) Complex. Angewandte Chemie - International Edition, 2019, 58, 15407-15411.	7.2	20
76	Combined Inâ€Situ Illuminationâ€NMRâ€UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry. Angewandte Chemie, 2018, 130, 7615-7619.	1.6	18
77	The H-Bonding Network of Acylguanidine Complexes: Combined Intermolecular 2hJH,P and 3hJN,P Scalar Couplings Provide an Insight into the Geometric Arrangement. Journal of the American Chemical Society, 2008, 130, 16846-16847.	6.6	17
78	The Supramolecular Balance for Transitionâ€Metal Complexes: Assessment of Noncovalent Interactions in Phosphoramidite Palladium Complexes. Angewandte Chemie - International Edition, 2013, 52, 2350-2354.	7.2	17
79	Struktur von [HSi ₉] ^{3â^'} im Festkörper und sein unerwartet hochdynamisches Verhalten in Lösung. Angewandte Chemie, 2018, 130, 13138-13142.	1.6	17
80	Elusive Zintl Ions [μâ€HSi ₄] ^{3â^'} and [Si ₅] ^{2â^'} in Liquid Ammonia: Protonation States, Sites, and Bonding Situation Evaluated by NMR and Theory. Angewandte Chemie - International Edition, 2019, 58, 3133-3137.	7.2	17
81	Photochemical transformation of chlorobenzenes and white phosphorus into arylphosphines and phosphonium salts. Chemical Communications, 2022, 58, 1100-1103.	2.2	17
82	Reaction of Iodoform and Isopropyl Grignard Reagent Revisited. Organometallics, 2001, 20, 5310-5313.	1.1	15
83	A PH-Functionalized Polyphosphazene: A Macromolecule with a Highly Flexible Backbone. Angewandte Chemie - International Edition, 2006, 45, 3083-3086.	7.2	14
84	A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide. Energies, 2013, 6, 4448-4464.	1.6	14
85	Disulfonimides versus Phosphoric Acids in Brønsted Acid Catalysis: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity. Journal of Organic Chemistry, 2019, 84, 13221-13231.	1.7	14
86	Elongated Gilman Cuprates: The Key to Different Reactivities of Cyano- and Iodocuprates. Journal of the American Chemical Society, 2014, 136, 5765-5772.	6.6	13
87	[Co@Sn 6 Sb 6] 3â~: Ein endohedraler 12â€Atomâ€Cluster mit einem nichtâ€zentrierten inneren Atom. Angewandte Chemie, 2018, 130, 15585-15589.	1.6	13
88	Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa. Journal of Molecular Liquids, 2021, 329, 115538.	2.3	13
89	Elusive Zintl lons [î¼â€HSi ₄] ^{3â^'} and [Si ₅] ^{2â^'} in Liquid Ammonia: Protonation States, Sites, and Bonding Situation Evaluated by NMR and Theory. Angewandte Chemie, 2019, 131, 3165-3169.	1.6	12
90	Low-oxidation state cobalt–magnesium complexes: ion-pairing and reactivity. Dalton Transactions, 2021, 50, 13985-13992.	1.6	12

#	Article	IF	CITATIONS
91	A Spin System Labeled and Highly Resolved ed-H(CCO)NH-TOCSY Experiment for the Facilitated Assignment of Proton Side Chains in Partially Deuterated Samples. Journal of Biomolecular NMR, 1998, 11, 191-198.	1.6	11
92	Gs-HSQC-NOESY versus gs-NOESY-HSQC experiments: signal attenuation due to diffusion; application to symmetrical molecules. Magnetic Resonance in Chemistry, 2004, 42, 308-312.	1.1	11
93	Relaxation Dispersion NMR to Reveal Fast Dynamics in Brønsted Acid Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping. Journal of the American Chemical Society, 2019, 141, 16398-16407.	6.6	10
94	Ternary complexes of chiral disulfonimides in transfer-hydrogenation of imines: the relevance of late intermediates in ion pair catalysis. Chemical Science, 2021, 12, 15263-15272.	3.7	10
95	Structures and Interligand Interaction Pattern of Phosphoramidite Pd Complexes by NMR Spectroscopy: Modulations in Extended Interaction Surfaces as Stereoselection Mode of a Privileged Class of Ligands. Chemistry - A European Journal, 2013, 19, 10551-10562.	1.7	9
96	Noncovalent CH–π and π–π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angewandte Chemie - International Edition, 2021, 60, 25832-25838.	7.2	9
97	A η2-triflate (OTf ) intermediate in the solution dynamics of PtMe3(OTf )·TMEDA: the â€~windscreen-wiper process' revisited ‡. Journal of the Chemical Society Dalton Transactions, 1999, , 1891-1896.	1.1	8
98	Photocatalytic Arylation of P ₄ and PH ₃ : Reaction Development Through Mechanistic Insight. Angewandte Chemie, 2021, 133, 24855-24863.	1.6	8
99	Secondary structure of the IIB domain of the Escherichia coli mannose transporter, a new fold in the class of $\hat{l}\pm\hat{l}^2$ twisted open-sheet structures. FEBS Letters, 1997, 404, 45-50.	1.3	7
100	Studies on the NusB Protein of Escherichia Coli Expression and Determination of Secondary-Structure Elements by Multinuclear NMR Spectroscopy. FEBS Journal, 1997, 248, 338-346.	0.2	7
101	Stability and Conversion of Tin Zintl Anions in Liquid Ammonia Investigated by NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 14539-14544.	1.7	7
102	Unprecedented Mechanism of an Organocatalytic Route to Conjugated Enynes with a Junction to Cyclic Nitronates. European Journal of Organic Chemistry, 2019, 2019, 328-337.	1.2	7
103	Mixed Organometallic–Organic Hybrid Assemblies Based on the Diarsene Complex [Cp 2 Mo 2 (CO) 4 (μ,η 2) 1	j _{1:7} Qq1 1	9.78431 ₄
104	A Structural Diversity of Molecular Alkalineâ€Earthâ€Metal Polyphosphides: From Supramolecular Wheel to Zintl Ion. Chemistry - A European Journal, 2021, 27, 14128-14137.	1.7	6
105	Selective [¹⁵ N] labelling of an N ^G â€propionylated arginine derivative. Journal of Labelled Compounds and Radiopharmaceuticals, 2009, 52, 29-32.	0.5	5
106	Improved applicability of DOSY experiments by high resolution probes combined with gradient amplifiers of diffusion units. Magnetic Resonance in Chemistry, 2009, 47, 568-572.	1.1	5
107	Complexation behaviour of LiCl and LiPF ₆ – model studies in the solid-state and in solution using a bidentate picolyl-based ligand. Chemical Communications, 2020, 56, 13335-13338.	2.2	5
108	Cloud point, auto-coacervation, and nematic ordering of micelles formed by ethylene oxide containing carboxylate surfactants. Journal of Colloid and Interface Science, 2022, 621, 470-488.	5.0	5

#	Article	IF	CITATIONS
109	Chemical shift assignment and conformational analysis of monoalkylated acylguanidines. Magnetic Resonance in Chemistry, 2010, 48, 678-684.	1.1	4
110	Conformational Preferences in Small Peptide Models: The Relevance of <i>ci>cis</i> †>/ <i>trans</i> †>â€Conformations. Chemistry - A European Journal, 2016, 22, 13328-13335.	1.7	4
111			

#	Article	lF	CITATIONS
127	Noncovalent CHâ€ï€ and Ï€â€ï€ Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angewandte Chemie, 2021, 133, 26036.	1.6	O
128	The Photocatalyzed Aza-Henry Reaction of N-Aryltetrahydroisoquinolines: Comprehensive Mechanism, H- versus H-Abstraction, and Background Reactions. Journal of the American Chemical Society, 2016, , .	6.6	0