Jos E M Haverkort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8641871/publications.pdf

Version: 2024-02-01

24 papers 1,364 citations

16 h-index 610901 24 g-index

26 all docs

26 does citations

times ranked

26

2308 citing authors

#	Article	IF	CITATIONS
1	Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature, 2020, 580, 205-209.	27.8	231
2	High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium–Tin–Oxide Mie Scatterers. ACS Nano, 2016, 10, 11414-11419.	14.6	150
3	Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Letters, 2013, 13, 4113-4117.	9.1	134
4	Efficient water reduction with gallium phosphide nanowires. Nature Communications, 2015, 6, 7824.	12.8	123
5	Directional and Polarized Emission from Nanowire Arrays. Nano Letters, 2015, 15, 4557-4563.	9.1	74
6	Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nature Nanotechnology, 2019, 14, 473-479.	31.5	73
7	Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage. Applied Physics Reviews, 2018, 5, 031106.	11.3	71
8	Highâ€Efficiency InPâ€Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management. Advanced Functional Materials, 2016, 26, 679-686.	14.9	69
9	Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al ₂ O ₃ with PO _{<i>x</i>} Interlayer. Nano Letters, 2017, 17, 6287-6294.	9.1	68
10	Position-controlled [100] InP nanowire arrays. Applied Physics Letters, 2012, 100, 053107.	3.3	62
11	High optical quality single crystal phase wurtzite and zincblende InP nanowires. Nanotechnology, 2013, 24, 115705.	2.6	59
12	Quantifying losses and thermodynamic limits in nanophotonic solar cells. Nature Nanotechnology, 2016, 11, 1071-1075.	31.5	50
13	Epitaxial Ge _{0.81} Sn _{0.19} Nanowires for Nanoscale Mid-Infrared Emitters. ACS Nano, 2019, 13, 8047-8054.	14.6	34
14	Ballistic Phonons in Ultrathin Nanowires. Nano Letters, 2020, 20, 2703-2709.	9.1	30
15	Crystal Phase Quantum Well Emission with Digital Control. Nano Letters, 2017, 17, 6062-6068.	9.1	27
16	Charge carrier-selective contacts for nanowire solar cells. Nature Communications, 2018, 9, 3248.	12.8	27
17	Efficient Green Emission from Wurtzite Al _{<i>x</i>} ln _{1–<i>x</i>} P Nanowires. Nano Letters, 2018, 18, 3543-3549.	9.1	16
18	On the origin of the photocurrent of electrochemically passivated p-lnP(100) photoelectrodes. Physical Chemistry Chemical Physics, 2018, 20, 14242-14250.	2.8	14

#	Article	lF	CITATIONS
19	Hexagonal silicon grown from higher order silanes. Nanotechnology, 2019, 30, 295602.	2.6	12
20	High-Yield Growth and Characterization of ⟠100⟩ InP p–n Diode Nanowires. Nano Letters, 2016, 16, 3071-3077.	9.1	11
21	Influence of growth conditions on the performance of InP nanowire solar cells. Nanotechnology, 2016, 27, 454003.	2.6	10
22	Nanowire Solar Cell Above the Radiative Limit. Advanced Optical Materials, 2021, 9, 2001636.	7.3	9
23	Unveiling Planar Defects in Hexagonal Group IV Materials. Nano Letters, 2021, 21, 3619-3625.	9.1	8
24	Extremely low material consumption III/V solar cell. , 2022, , .		1