
Kouki Oka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(vinyl diphenylquinoxaline) as a hydrogen storage material toward rapid hydrogen evolution. MRS Communications, 2022, 12, 213-216.	0.8	3
2	Systematic arrangement control of functional organic molecules. CrystEngComm, 2022, 24, 4180-4186.	1.3	8
3	Porous Organic Salts: Diversifying Void Structures and Environments. Angewandte Chemie, 2022, 134, .	1.6	3
4	Porous Organic Salts: Diversifying Void Structures and Environments. Angewandte Chemie - International Edition, 2022, 61, e202202597.	7.2	12
5	Controlling the Movability and Excimer Formation of Functional Organic Molecules. Bulletin of the Chemical Society of Japan, 2022, 95, 1111-1116.	2.0	5
6	Systematic Study of Pnictogen-Fused Heterofluorenes. Inorganic Chemistry, 2022, 61, 7318-7326.	1.9	7
7	Inside Cover: Porous Organic Salts: Diversifying Void Structures and Environments (Angew. Chem. Int.) Tj ETQq1	1 0.78431 7.2	l4rgBT /Over
8	Innentitelbild: Porous Organic Salts: Diversifying Void Structures and Environments (Angew. Chem.) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
9	Molecular Arrangement Control of [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene (BTBT) via Charge-Assisted Hydrogen Bond. Bulletin of the Chemical Society of Japan, 2022, 95, 1178-1182.	2.0	9
10	Facile reversible hydrogenation of a poly(6â€vinylâ€2,3â€dimethylâ€1,2,3,4â€ŧetrahydroquinoxaline) gelâ€like so Polymers for Advanced Technologies, 2021, 32, 1162-1167.	olid. 1.6	8
11	Nonpolar Water Clusters: Proton Nuclear Magnetic Resonance Spectroscopic Evidence for Transformation from Polar Water to Nonpolar Water Clusters in Liquid State. Journal of Physical Chemistry Letters, 2021, 12, 276-279.	2.1	4
12	An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors – A Case Study for Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 5349-5356.	4.0	11
13	Completely Solar-Driven Photoelectrochemical Water Splitting Using a Neat Polythiophene Film. Cell Reports Physical Science, 2021, 2, 100306.	2.8	10

14	Organic Ï€â€Conjugated Polymers as Photocathode Materials for Visibleâ€Lightâ€Enhanced Hydrogen and Hydrogen Peroxide Production from Water. Advanced Energy Materials, 2021, 11, 2003724.	10.2	36
15	Synthesis of vinyl polymers substituted with 2-propanol and acetone and investigation of their reversible hydrogen storage capabilities. Polymer Journal, 2021, 53, 799-804.	1.3	8
16	Hydrophilic Anthraquinone-Substituted Polymer: Its Environmentally Friendly Preparation and Efficient Charge/Proton-Storage Capability for Polymer–Air Secondary Batteries. Macromolecules, 2021, 54, 4854-4859.	2.2	15
17	Two States of Water Converge to One State below 215 K. Journal of Physical Chemistry Letters, 2021, 12, 5802-5806.	2.1	3

Poly(3â€alkylthiophene) Films as Solventâ€Processable Photoelectrocatalysts for Efficient Oxygen Reduction to Hydrogen Peroxide. Advanced Energy and Sustainability Research, 2021, 2, 2100103.

2.8 4

Коикі Ока

#	Article	IF	CITATIONS
19	Alcohol-Substituted Vinyl Polymers for Stockpiling Hydrogen. Bulletin of the Chemical Society of Japan, 2021, 94, 2770-2773.	2.0	2
20	Copolymer of Phenylene and Thiophene toward a Visibleâ€Lightâ€Driven Photocatalytic Oxygen Reduction to Hydrogen Peroxide. Advanced Science, 2021, 8, 2003077.	5.6	26
21	Organic Ï€â€Conjugated Polymers as Photocathode Materials for Visibleâ€Lightâ€Enhanced Hydrogen and Hydrogen Peroxide Production from Water (Adv. Energy Mater. 43/2021). Advanced Energy Materials, 2021, 11, .	10.2	0
22	Poly(3â€alkylthiophene) Films as Solventâ€Processable Photoelectrocatalysts for Efficient Oxygen Reduction to Hydrogen Peroxide. Advanced Energy and Sustainability Research, 2021, 2, .	2.8	1
23	Rechargeable proton exchange membrane fuel cell containing an intrinsic hydrogen storage polymer. Communications Chemistry, 2020, 3, .	2.0	35
24	Charge- and Proton-Storage Capability of Naphthoquinone-Substituted Poly(allylamine) as Electrode-Active Material for Polymer–Air Secondary Batteries. ACS Applied Energy Materials, 2020, 3, 12019-12024.	2.5	16
25	A Polymer Sheetâ€Based Hydrogen Carrier. European Journal of Organic Chemistry, 2020, 2020, 5876-5879.	1.2	9
26	Conducting Redox Polymer as Organic Anode Material for Polymerâ€Manganese Secondary Batteries. ChemElectroChem, 2020, 7, 3336-3340.	1.7	17
27	Reversible Hydrogen Fixation and Release under Mild Conditions by Poly(vinylquinoxaline). ACS Applied Polymer Materials, 2020, 2, 2756-2760.	2.0	13
28	Poly(dihydroxybenzoquinone): its high-density and robust charge storage capability in rechargeable acidic polymer–air batteries. Chemical Communications, 2020, 56, 4055-4058.	2.2	29
29	Conducting Redox Polymer as a Robust Organic Electrodeâ€Active Material in Acidic Aqueous Electrolyte towards Polymer–Air Secondary Batteries. ChemSusChem, 2020, 13, 2280-2285.	3.6	25
30	Supercooled Low-Entropy Water Clusters. Journal of Physical Chemistry Letters, 2020, 11, 3667-3671.	2.1	4
31	Radical Polymers for Rechargeable Batteries. RSC Polymer Chemistry Series, 2020, , 137-165.	0.1	2
32	Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries. Electrochemistry Communications, 2019, 105, 106489.	2.3	30
33	Reversible Hydrogen Releasing and Fixing with Poly(Vinylfluorenol) through a Mild Irâ€Catalyzed Dehydrogenation and Electrochemical Hydrogenation. Macromolecular Rapid Communications, 2019, 40, e1900139.	2.0	18
34	Poly(1,4â€di(2â€ŧhienyl))benzene Facilitating Complete Lightâ€Driven Water Splitting under Visible Light at High pH. Advanced Energy Materials, 2019, 9, 1803286.	10.2	23
35	Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques. Scientific Reports, 2019, 9, 223.	1.6	26
36	Light-assisted electrochemical water-splitting at very low bias voltage using metal-free polythiophene as photocathode at high pH in a full-cell setup. Energy and Environmental Science, 2018, 11, 1335-1342.	15.6	56

Коикі Ока

#	Article	IF	CITATIONS
37	Poly(vinyldibenzothiophenesulfone): Its Redox Capability at Very Negative Potential Toward an Allâ€Organic Rechargeable Device with Highâ€Energy Density. Advanced Functional Materials, 2018, 28, 1805858.	7.8	45
38	N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability. MRS Communications, 2017, 7, 967-973.	0.8	18
39	Hydrophilic Isopropanol/acetoneâ€substituted Polymers for Safe Hydrogen Storage. Polymer International, 0, , .	1.6	6