List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8641606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V) reduction, a novel biogeochemical process. ISME Journal, 2022, 16, 1547-1556.	9.8	48
2	Defining the <i>Sphagnum</i> Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. MBio, 2022, 13, .	4.1	18
3	The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA. Microbiome, 2022, 10, 37.	11.1	22
4	Compositional stability of peat in ecosystem-scale warming mesocosms. PLoS ONE, 2022, 17, e0263994.	2.5	5
5	Stress-related ecophysiology of members of the genus Rhodanobacter isolated from a mixed waste contaminated subsurface. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	12
6	GoMRI Insights into Microbial Genomics and Hydrocarbon Bioremediation Response in Marine Ecosystems. Oceanography, 2021, 34, 124-135.	1.0	9
7	Genomic characterization and computational phenotyping of nitrogen-fixing bacteria isolated from Colombian sugarcane fields. Scientific Reports, 2021, 11, 9187.	3.3	10
8	Beach sand oil spills select for generalist microbial populations. ISME Journal, 2021, 15, 3418-3422.	9.8	3
9	Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	54
10	Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil, 2021, 466, 649-674.	3.7	15
11	A novel, divergent alkane monooxygenase (<scp><i>alkB</i></scp>) clade involved in crude oil biodegradation. Environmental Microbiology Reports, 2021, 13, 830-840.	2.4	9
12	Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006511.	3.0	7
13	Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome, 2021, 9, 233.	11.1	53
14	Genomics Tools and Microbiota: Applications to Response in Coastal Ecosystems. International Oil Spill Conference Proceedings, 2021, 2021, .	0.1	0
15	Biodegradation of Petroleum Hydrocarbons in theÂDeep Sea. , 2020, , 107-124.		10
16	Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of Mexico. Marine Pollution Bulletin, 2020, 150, 110683.	5.0	25
17	Integrated Omics Elucidate the Mechanisms Driving the Rapid Biodegradation of Deepwater Horizon Oil in Intertidal Sediments Undergoing Oxic–Anoxic Cycles. Environmental Science & Technology, 2020, 54, 10088-10099.	10.0	11
18	Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications, 2020, 11, 2373.	12.8	76

#	Article	IF	CITATIONS
19	Genome repository of oil systems: An interactive and searchable database that expands the catalogued diversity of crude oilâ€associated microbes. Environmental Microbiology, 2020, 22, 2094-2106.	3.8	21
20	Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA. FEMS Microbiology Ecology, 2020, 96, .	2.7	21
21	Decomposition of sediment-oil-agglomerates in a Gulf of Mexico sandy beach. Scientific Reports, 2019, 9, 10071.	3.3	35
22	The core seafloor microbiome in the Gulf of Mexico is remarkably consistent and shows evidence of recovery from disturbance caused by major oil spills. Environmental Microbiology, 2019, 21, 4316-4329.	3.8	11
23	Dispersant Enhances Hydrocarbon Degradation and Alters the Structure of Metabolically Active Microbial Communities in Shallow Seawater From the Northeastern Gulf of Mexico. Frontiers in Microbiology, 2019, 10, 2387.	3.5	12
24	Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters. Applied and Environmental Microbiology, 2019, 85, .	3.1	23
25	Experimental warming alters the community composition, diversity, and N ₂ fixation activity of peat moss (<i>Sphagnum fallax</i>) microbiomes. Global Change Biology, 2019, 25, 2993-3004.	9.5	89
26	Impact of Warming on Greenhouse Gas Production and Microbial Diversity in Anoxic Peat From a Sphagnum-Dominated Bog (Grand Rapids, Minnesota, United States). Frontiers in Microbiology, 2019, 10, 870.	3.5	43
27	" <i>Candidatus</i> Macondimonas diazotrophicaâ€, a novel gammaproteobacterial genus dominating crude-oil-contaminated coastal sediments. ISME Journal, 2019, 13, 2129-2134.	9.8	46
28	Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment. Scientific Reports, 2019, 9, 1239.	3.3	31
29	Succession of microbial populations and nitrogen-fixation associated with the biodegradation of sediment-oil-agglomerates buried in a Florida sandy beach. Scientific Reports, 2019, 9, 19401.	3.3	27
30	Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 479-494.	3.0	41
31	Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping. Marine Pollution Bulletin, 2018, 126, 488-500.	5.0	40
32	Genome Sequences of 15 Klebsiella sp. Isolates from Sugarcane Fields in Colombia's Cauca Valley. Genome Announcements, 2018, 6, .	0.8	2
33	The Sphagnome Project: enabling ecological and evolutionary insights through a genusâ€level sequencing project. New Phytologist, 2018, 217, 16-25.	7.3	54
34	Diazotroph Community Characterization via a High-Throughput <i>nifH</i> Amplicon Sequencing and Analysis Pipeline. Applied and Environmental Microbiology, 2018, 84, .	3.1	78
35	Diversity of Active Viral Infections within the Sphagnum Microbiome. Applied and Environmental Microbiology, 2018, 84, .	3.1	27
36	Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biology and Biochemistry, 2018, 125, 244-250.	8.8	25

#	Article	IF	CITATIONS
37	Microbial Community Structure Associated with Biogeochemical Processes in the Sulfate–Methane Transition Zone (SMTZ) of Gas-hydrate-bearing Sediment of the Ulleung Basin, East Sea. Geomicrobiology Journal, 2017, 34, 207-219.	2.0	17
38	Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Applied and Environmental Microbiology, 2017, 83, .	3.1	46
39	Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Organic Geochemistry, 2017, 112, 22-32.	1.8	59
40	Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology, 2017, 23, 2396-2412.	9.5	54
41	Responses of Microbial Communities to Hydrocarbon Exposures. Oceanography, 2016, 29, 136-149.	1.0	59
42	The <i>Sphagnum</i> microbiome: new insights from an ancient plant lineage. New Phytologist, 2016, 211, 57-64.	7.3	123
43	Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community. MBio, 2016, 7, e02234-15.	4.1	105
44	Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Applied and Environmental Microbiology, 2016, 82, 2363-2371.	3.1	78
45	Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity. Applied and Environmental Microbiology, 2016, 82, 518-527.	3.1	48
46	Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout. PLoS ONE, 2015, 10, e0132341.	2.5	126
47	Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME Journal, 2015, 9, 2740-2744.	9.8	69
48	Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME Journal, 2015, 9, 1928-1940.	9.8	155
49	Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland. Applied and Environmental Microbiology, 2014, 80, 3531-3540.	3.1	102
50	The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Frontiers in Microbiology, 2014, 5, 471.	3.5	35
51	Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 2014, 80, 3518-3530.	3.1	114
52	Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 661-675.	3.0	170
53	Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate. Applied and Environmental Microbiology, 2014, 80, 1810-1820.	3.1	15
54	Benthic Exchange and Biogeochemical Cycling in Permeable Sediments. Annual Review of Marine Science, 2014, 6, 23-51.	11.6	283

#	Article	IF	CITATIONS
55	Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in <scp>A</scp> rctic fjord sediments. Environmental Microbiology, 2014, 16, 3331-3344.	3.8	84
56	Microbial Dynamics Following the Macondo Oil Well Blowout across Gulf of Mexico Environments. BioScience, 2014, 64, 766-777.	4.9	142
57	Targeted Petroleomics: Analytical Investigation of Macondo Well Oil Oxidation Products from Pensacola Beach. Energy & amp; Fuels, 2014, 28, 4043-4050.	5.1	130
58	Microbial cultivation and the role of microbial resource centers in the omics era. Applied Microbiology and Biotechnology, 2013, 97, 51-62.	3.6	85
59	Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold <scp>A</scp> rctic fjord sediments (<scp>S</scp> valbard, <scp>N</scp> orway). Environmental Microbiology, 2013, 15, 1606-1618.	3.8	36
60	The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals. Geochimica Et Cosmochimica Acta, 2013, 106, 344-363.	3.9	57
61	Draft Genome Sequences for Oil-Degrading Bacterial Strains from Beach Sands Impacted by the Deepwater Horizon Oil Spill. Genome Announcements, 2013, 1, .	0.8	21
62	Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site. Applied and Environmental Microbiology, 2012, 78, 1039-1047.	3.1	184
63	Genome Sequences for Six Rhodanobacter Strains, Isolated from Soils and the Terrestrial Subsurface, with Variable Denitrification Capabilities. Journal of Bacteriology, 2012, 194, 4461-4462.	2.2	62
64	Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnology and Oceanography, 2012, 57, 185-198.	3.1	73
65	Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2457-2462.	1.7	135
66	The Bacterial Composition within the Sarracenia purpurea Model System: Local Scale Differences and the Relationship with the Other Members of the Food Web. PLoS ONE, 2012, 7, e50969.	2.5	22
67	Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments. Frontiers in Microbiology, 2012, 3, 280.	3.5	13
68	Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill. Applied and Environmental Microbiology, 2011, 77, 7962-7974.	3.1	779
69	A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5955-5965.	3.1	108
70	Linking Specific Heterotrophic Bacterial Populations to Bioreduction of Uranium and Nitrate in Contaminated Subsurface Sediments by Using Stable Isotope Probing. Applied and Environmental Microbiology, 2011, 77, 8197-8200.	3.1	19
71	Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards in Genomic Sciences, 2010, 3, 243-248.	1.5	228
72	Decomposition of planktonâ€derived dissolved organic matter in permeable coastal sediments. Limnology and Oceanography, 2010, 55, 857-871.	3.1	32

#	Article	IF	CITATIONS
73	Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard,) Tj ETQq1 1 0.784	1314 rgBT	/Qverlock
74	Impact of Biostimulated Redox Processes on Metal Dynamics in an Iron-Rich Creek Soil of a Former Uranium Mining Area. Environmental Science & Technology, 2010, 44, 177-183.	10.0	49
75	Aerobic denitrification in permeable Wadden Sea sediments. ISME Journal, 2010, 4, 417-426.	9.8	189
76	Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil. Applied and Environmental Microbiology, 2010, 76, 3143-3152.	3.1	63
77	Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination. Applied and Environmental Microbiology, 2010, 76, 3244-3254.	3.1	136
78	Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction. Applied and Environmental Microbiology, 2010, 76, 5728-5735.	3.1	38
79	Effects of Nitrate on the Stability of Uranium in a Bioreduced Region of the Subsurface. Environmental Science & Technology, 2010, 44, 5104-5111.	10.0	100
80	Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 546-553.	1.7	91
81	Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard,) Tj ETQq1 1 0.784	1314 rgBT	/Overlock
82	Decomposition of plankton-derived dissolved organic matter in permeable coastal sediments. Limnology and Oceanography, 2010, 55, 857-871.	3.1	28
83	Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature MA¶ssbauer spectroscopic study of Garfield nontronite. Pure and Applied Chemistry, 2009, 81, 1499-1509.	1.9	79
84	Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea. Biogeochemistry, 2009, 92, 231-245.	3.5	66
85	Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiology Ecology, 2009, 68, 94-107.	2.7	37
86	Identification of phytodetritusâ€degrading microbial communities in sublittoral Gulf of Mexico sands. Limnology and Oceanography, 2009, 54, 1073-1083.	3.1	50
87	Functional Diversity and Electron Donor Dependence of Microbial Populations Capable of U(VI) Reduction in Radionuclide-Contaminated Subsurface Sediments. Applied and Environmental Microbiology, 2008, 74, 3159-3170.	3.1	97
88	pH Gradient-Induced Heterogeneity of Fe(III)-Reducing Microorganisms in Coal Mining-Associated Lake Sediments. Applied and Environmental Microbiology, 2008, 74, 1019-1029.	3.1	60
89	pH Gradient-Induced Heterogeneity of Fe(III)-Reducing Microorganisms in Coal Mining-Associated Lake Sediments. Applied and Environmental Microbiology, 2008, 74, 7100-7100.	3.1	0
90	Characterization of Nitrifying, Denitrifying, and Overall Bacterial Communities in Permeable Marine Sediments of the Northeastern Gulf of Mexico. Applied and Environmental Microbiology, 2008, 74, 4440-4453.	3.1	92

#	Article	IF	CITATIONS
91	Relative contributions of sulfate- and iron(III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh. Applied Geochemistry, 2007, 22, 2637-2651.	3.0	60
92	Electron flow in acidic subsurface sediments co-contaminated with nitrate and uranium. Geochimica Et Cosmochimica Acta, 2007, 71, 643-654.	3.9	35
93	Effects of in situ biostimulation on iron mineral speciation in a sub-surface soil. Geochimica Et Cosmochimica Acta, 2007, 71, 835-843.	3.9	54
94	Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiology Ecology, 2007, 59, 95-107.	2.7	150
95	Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments. Geochimica Et Cosmochimica Acta, 2006, 70, 1761-1771.	3.9	45
96	Microbial reduction of iron in smectite. Comptes Rendus - Geoscience, 2006, 338, 468-475.	1.2	113
97	Comparisons of structural Fe reduction in smectites by bacteria and dithionite: an infrared spectroscopic study. Clays and Clay Minerals, 2006, 54, 195-208.	1.3	63
98	Microbial Community Diversity Associated with Carbon and Nitrogen Cycling in Permeable Shelf Sediments. Applied and Environmental Microbiology, 2006, 72, 5689-5701.	3.1	126
99	Salt marsh pore water geochemistry does not correlate with microbial community structure. Estuarine, Coastal and Shelf Science, 2005, 62, 233-251.	2.1	88
100	Quantification of Ammonia-Oxidizing Bacteria and Factors Controlling Nitrification in Salt Marsh Sediments. Applied and Environmental Microbiology, 2005, 71, 240-246.	3.1	137
101	Quantification of macrobenthic effects on diagenesis using a multicomponent inversemodel in salt marsh sediments. Limnology and Oceanography, 2004, 49, 2058-2072.	3.1	27
102	Change in Bacterial Community Structure during In Situ Biostimulation of Subsurface Sediment Cocontaminated with Uranium and Nitrate. Applied and Environmental Microbiology, 2004, 70, 4911-4920.	3.1	260
103	Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA). Estuarine, Coastal and Shelf Science, 2003, 56, 1001-1010.	2.1	41
104	Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 2003, 57, 1183-1193.	2.1	82
105	Dehydrochlorination of 1,1,1â€ŧrichloroethane and pentachloroethane by microbially reduced ferruginous smectite. Environmental Toxicology and Chemistry, 2003, 22, 1046-1050.	4.3	27
106	Microscopic Evidence for Microbial Dissolution of Smectite. Clays and Clay Minerals, 2003, 51, 502-512.	1.3	107
107	Enumeration and Characterization of Iron(III)-ReducingMicrobial Communities from Acidic Subsurface Sediments ContaminatedwithUranium(VI). Applied and Environmental Microbiology, 2003, 69, 7467-7479.	3.1	217
108	Microscopic Evidence for Microbial Dissolution of Smectite. Clays and Clay Minerals, 2003, 51, 502-512.	1.3	2

#	Article	IF	CITATIONS
109	The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnology and Oceanography, 2002, 47, 230-240.	3.1	170
110	Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms. Applied and Environmental Microbiology, 2002, 68, 6256-6262.	3.1	201
111	Title is missing!. Biogeochemistry, 2002, 60, 49-76.	3.5	146
112	A Quantitative Relationship that Demonstrates Mercury Methylation Rates in Marine Sediments Are Based on the Community Composition and Activity of Sulfate-Reducing Bacteria. Environmental Science & Technology, 2001, 35, 2491-2496.	10.0	172
113	Fate of atrazine and alachlor in redoxâ€treated ferruginous smectite. Environmental Toxicology and Chemistry, 2001, 20, 2717-2724.	4.3	45
114	Growth and Phylogenetic Properties of Novel Bacteria Belonging to the Epsilon Subdivision of the Proteobacteria Enriched from Alvinella pompejana and Deep-Sea Hydrothermal Vents. Applied and Environmental Microbiology, 2001, 67, 4566-4572.	3.1	137
115	FATE OF ATRAZINE AND ALACHLOR IN REDOX-TREATED FERRUGINOUS SMECTITE. Environmental Toxicology and Chemistry, 2001, 20, 2717.	4.3	3
116	Sulfate-Reducing Bacteria Methylate Mercury at Variable Rates in Pure Culture and in Marine Sediments. Applied and Environmental Microbiology, 2000, 66, 2430-2437.	3.1	317
117	The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica Et Cosmochimica Acta, 1999, 63, 3705-3713.	3.9	181
118	Respiration and Dissolution of Iron(III)-Containing Clay Minerals by Bacteria. Environmental Science & Technology, 1999, 33, 3127-3133.	10.0	200
119	Reduction of Structural Fe(III) in Smectite by a Pure Culture of Shewanella Putrefaciens Strain MR-1. Clays and Clay Minerals, 1996, 44, 522-529.	1.3	211
120	Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry, 1995, 29, 159-181.	3.5	125
121	Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn (III) as an environmental oxidant. Geochimica Et Cosmochimica Acta, 1995, 59, 885-894.	3.9	187
122	Dissolution and Reduction of Magnetite by Bacteria. Environmental Science & Technology, 1995, 29, 2535-2540.	10.0	245
123	Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica Et Cosmochimica Acta, 1994, 58, 1701-1710.	3.9	536
124	Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Marine Chemistry, 1992, 40, 81-103.	2.3	227
125	Iodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms. Estuarine, Coastal and Shelf Science, 1991, 32, 267-279.	2.1	66
126	Temporal and spatial variability of reduced sulfur species (FeS2, S2O3 2â^') and porewater parameters in salt marsh sediments. Biogeochemistry, 1991, 14, 57-88.	3.5	87