Xiaolong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8641103/publications.pdf

Version: 2024-02-01

1040056 839539 25 371 9 18 citations h-index g-index papers 25 25 25 299 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A brief exposure to cadmium impairs Leydig cell regeneration in the adult rat testis. Scientific Reports, 2017, 7, 6337.	3.3	93
2	A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis. Frontiers in Pharmacology, 2017, 8, 704.	3.5	38
3	Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions. Food and Chemical Toxicology, 2017, 110, 13-24.	3.6	29
4	Actin binding proteins, actin cytoskeleton and spermatogenesis – Lesson from toxicant models. Reproductive Toxicology, 2020, 96, 76-89.	2.9	22
5	Single-cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Human Molecular Genetics, 2022, 31, 321-333.	2.9	22
6	Unraveling epigenomic abnormality in azoospermic human males by WGBS, RNA-Seq, and transcriptome profiling analyses. Journal of Assisted Reproduction and Genetics, 2020, 37, 789-802.	2.5	21
7	Human obstructive (postvasectomy) and nonobstructive azoospermia – Insights from scRNA-Seq and transcriptome analysis. Genes and Diseases, 2022, 9, 766-776.	3.4	13
8	Male Infertility in Humans: An Update on Non-obstructive Azoospermia (NOA) and Obstructive Azoospermia (OA). Advances in Experimental Medicine and Biology, 2021, 1288, 161-173.	1.6	13
9	Zearalenone Inhibits Rat and Human $11<$ i> $\hat{l}^2<$ i>-Hydroxysteroid Dehydrogenase Type 2. BioMed Research International, 2015, 2015, 1-7.	1.9	11
10	Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Seminars in Cell and Developmental Biology, 2022, 121, 99-113.	5.0	11
11	Multiomics analysis of male infertility. Biology of Reproduction, 2022, 107, 118-134.	2.7	11
12	Motor Proteins and Spermatogenesis. Advances in Experimental Medicine and Biology, 2021, 1288, 131-159.	1.6	10
13	Butylated Hydroxyanisole Potently Inhibits Rat and Human $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 2. Pharmacology, 2016, 97, 10-17.	2.2	9
14	Tethering of Telomeres to the Nuclear Envelope Is Mediated by SUN1-MAJIN and Possibly Promoted by SPDYA-CDK2 During Meiosis. Frontiers in Cell and Developmental Biology, 2020, 8, 845.	3.7	8
15	CG6015 controls spermatogonia transit-amplifying divisions by epidermal growth factor receptor signaling in Drosophila testes. Cell Death and Disease, 2021, 12, 491.	6.3	8
16	A laminin-based local regulatory network in the testis that supports spermatogenesis. Seminars in Cell and Developmental Biology, 2022, 121, 40-52.	5.0	7
17	Role of laminin and collagen chains in human spermatogenesis – Insights from studies in rodents and scRNA-Seq transcriptome profiling. Seminars in Cell and Developmental Biology, 2022, 121, 125-132.	5.0	7
18	Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells, 2022, 11, 591.	4.1	7

#	ARTICLE	IF	CITATION
19	PCP Protein Inversin Regulates Testis Function Through Changes in Cytoskeletal Organization of Actin and Microtubules. Endocrinology, 2022, 163, .	2.8	6
20	Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histology and Histopathology, 2021, 36, 249-265.	0.7	6
21	Determination of Caudatin in Rat Plasma by UPLC-MS/MS: Application to a Preclinical Pharmacokinetic Study. Pharmacology, 2015, 96, 49-54.	2.2	5
22	mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Seminars in Cell and Developmental Biology, 2022, 121, 53-62.	5.0	4
23	Signaling Proteins That Regulate Spermatogenesis Are the Emerging Target of Toxicant-Induced Male Reproductive Dysfunction. Frontiers in Endocrinology, 2021, 12, 800327.	3.5	4
24	Mn(<scp>ii</scp>)-Catalysed <i>ortho</i> -alkenylation of aromatic amines and its application in reproductive diseases. RSC Advances, 2021, 11, 164-167.	3.6	3
25	AKAP9 supports spermatogenesis through its effects on microtubule and actin cytoskeletons in the rat testis. FASEB Journal, 2021, 35, e21925.	0.5	3