Injamamul Arief

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640917/publications.pdf

Version: 2024-02-01

516681 677123 22 812 16 22 citations g-index h-index papers 22 22 22 995 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elastomeric microwell-based triboelectric nanogenerators by in situ simultaneous transfer-printing. Materials Horizons, 2022, 9, 1468-1478.	12.2	20
2	Designing Supertough and Ultrastretchable Liquid Metal-Embedded Natural Rubber Composites for Soft-Matter Engineering. ACS Applied Materials & Soft-Matter Engineering.	8.0	21
3	Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator. Applied Materials Today, 2021, 25, 101219.	4.3	14
4	Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation. Composites Part B: Engineering, 2019, 177, 107283.	12.0	33
5	Magnetorheology in CoNi nanoplatelet-based MRFs: Effect of platelet orientation and oscillatory shear. Journal of Magnetism and Magnetic Materials, 2019, 479, 326-331.	2.3	12
6	Wool-Ball-Type Core-Dual-Shell FeCo@SiO2@MWCNTs Microcubes for Screening Electromagnetic Interference. ACS Applied Nano Materials, 2018, 1, 2261-2271.	5.0	22
7	Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe 3 Ni alloy microspheres. Journal of Magnetism and Magnetic Materials, 2017, 429, 236-240.	2.3	17
8	FeCo-Anchored Reduced Graphene Oxide Framework-Based Soft Composites Containing Carbon Nanotubes as Highly Efficient Microwave Absorbers with Excellent Heat Dissipation Ability. ACS Applied Materials & Dissipation Applied & Dissipation & Dissipation & Dissipation & Dissipation & Dissipation & Dissipation & Di	8.0	132
9	Magnetorheological Payne effect in bidisperse MR fluids containing Fe nanorods and Fe3O4 nanospheres: A dynamic rheological study. Journal of Alloys and Compounds, 2017, 696, 1053-1058.	5.5	30
10	Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS Applied Materials & Interfaces, 2017, 9, 3030-3039.	8.0	169
11	Electromagnetic screening in soft conducting composite-containing ferrites: the key role of size and shape anisotropy. Materials Chemistry Frontiers, 2017, 1, 2574-2589.	5.9	26
12	Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites. ChemistrySelect, 2017, 2, 5984-5999.	1.5	14
13	Graphene analogues as emerging materials for screening electromagnetic radiations. Nano Structures Nano Objects, 2017, 11, 94-101.	3.5	36
14	Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. Journal of Materials Chemistry C, 2017, 5, 7390-7403.	5.5	108
15	Effect of temperature on steady shear magnetorheology of CoNi microcluster-based MR fluids. Journal of Magnetism and Magnetic Materials, 2016, 412, 194-200.	2.3	23
16	Tuning the Shape Anisotropy and Electromagnetic Screening Ability of Ultrahigh Magnetic Polymer and Surfactant-Capped FeCo Nanorods and Nanocubes in Soft Conducting Composites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26285-26297.	8.0	57
17	Two-step yielding in novel CoNi nanoplatelet-based magnetic fluids under oscillatory rheology. Materials Letters, 2016, 167, 192-196.	2.6	8
18	Dynamic and rate-dependent yielding behavior of Co0.9Ni0.1 microcluster based magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2016, 397, 57-63.	2.3	16

#	Article	lF	CITATION
19	Amphiphilic triblock copolymer-assisted synthesis of hierarchical NiCo nanoflowers by homogeneous nucleation in liquid polyols. Journal of Magnetism and Magnetic Materials, 2014, 372, 214-223.	2.3	17
20	Preparation of spherical and cubic Fe 55 Co 45 microstructures for studying the role of particle morphology in magnetorheological suspensions. Journal of Magnetism and Magnetic Materials, 2014, 360, 104-108.	2.3	25
21	Synthesis of dimorphic MR fluid containing NiCo nanoflowers by the polymer assisted polyol method and study of its magnetorheological properties. Physica B: Condensed Matter, 2014, 448, 73-76.	2.7	11
22	Fabrication and viscoelastic properties of PVC coated magnetite agglomerates in magneto-rheological suspension. Magnetohydrodynamics, 2013, 49, 479-483.	0.3	1