Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640805/publications.pdf

Version: 2024-02-01

GUANC YANC

#	Article	IF	CITATIONS
1	Natural history of Waldenström macroglobulinemia following acquired resistance to ibrutinib monotherapy. Haematologica, 2022, 107, 1163-1171.	3.5	11
2	Long-term follow-up of ibrutinib monotherapy in treatment-naive patients with Waldenstrom macroglobulinemia. Leukemia, 2022, 36, 532-539.	7.2	50
3	Venetoclax in Previously Treated Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2022, 40, 63-71.	1.6	53
4	A new role for the SRC family kinase HCK as a driver of SYK activation in MYD88 mutated lymphomas. Blood Advances, 2022, 6, 3332-3338.	5.2	4
5	Partial response or better at sixÂmonths is prognostic of superior progressionâ€free survival in Waldenström macroglobulinaemia patients treated with ibrutinib. British Journal of Haematology, 2021, 192, 542-550.	2.5	8
6	Long-Term Follow-Up of Ibrutinib Monotherapy in Symptomatic, Previously Treated Patients With WaldenstrĶm Macroglobulinemia. Journal of Clinical Oncology, 2021, 39, 565-575.	1.6	98
7	Coronavirus diseases 2019 and kidney injury: a brief review based on current evidence. Chinese Medical Journal, 2021, 134, 993-995.	2.3	0
8	Epigenetic targeting of Waldenström macroglobulinemia cells with BET inhibitors synergizes with BCL2 or histone deacetylase inhibition. Epigenomics, 2021, 13, 129-144.	2.1	7
9	Bone marrow involvement and subclonal diversity impairs detection of mutated <i>CXCR4</i> by diagnostic nextâ€generation sequencing in Waldenström macroglobulinaemia. British Journal of Haematology, 2021, 194, 730-733.	2.5	16
10	Cellâ€free <scp>DNA</scp> analysis for detection of <scp><i>MYD88</i>^{L265P}</scp> and <scp><i>CXCR4</i>^{S338X}</scp> mutations in <scp>W</scp> aldenström macroglobulinemia. American Journal of Hematology, 2021, 96, E250-E253.	4.1	8
11	The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood, 2021, 138, 1966-1979.	1.4	16
12	Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström macroglobulinemia. Blood, 2021, 138, 1535-1539.	1.4	32
13	Diagnostic Next-generation Sequencing Frequently Fails to Detect MYD88L265P in Waldenström Macroglobulinemia. HemaSphere, 2021, 5, e624.	2.7	15
14	The clinical and genetic research of Waardenburg syndrome type I and II in Chinese families. International Journal of Pediatric Otorhinolaryngology, 2020, 130, 109806.	1.0	5
15	Comparative genomics of CXCR4MUT and CXCR4WT single cells in Waldenström's macroglobulinemia. Blood Advances, 2020, 4, 4550-4553.	5.2	3
16	Response and Survival Outcomes to Ibrutinib Monotherapy for Patients With Waldenström Macroglobulinemia on and off Clinical Trials. HemaSphere, 2020, 4, e363.	2.7	12
17	lxazomib, dexamethasone, and rituximab in treatment-naive patients with Waldenström macroglobulinemia: long-term follow-up. Blood Advances, 2020, 4, 3952-3959.	5.2	35
18	Meta-analysis of association between CT-based features and tumor spread through air spaces in lung adenocarcinoma. Journal of Cardiothoracic Surgery, 2020, 15, 243.	1.1	9

#	Article	IF	CITATIONS
19	The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19–infected patients. Blood, 2020, 135, 1912-1915.	1.4	253
20	Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. Journal of Clinical Oncology, 2020, 38, 1198-1208.	1.6	103
21	Genomic evolution of ibrutinibâ€resistant clones in Waldenström macroglobulinaemia. British Journal of Haematology, 2020, 189, 1165-1170.	2.5	23
22	<scp>CXCR4</scp> mutational status does not impact outcomes in patients with <scp>W</scp> aldenström macroglobulinemia treated with proteasome inhibitors. American Journal of Hematology, 2020, 95, E95-E98.	4.1	12
23	A matched case-control study comparing features, treatment and outcomes between patients with non-IgM lymphoplasmacytic lymphoma and Waldenström macroglobulinemia. Leukemia and Lymphoma, 2020, 61, 1388-1394.	1.3	9
24	SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer Journal, 2020, 10, 12.	6.2	34
25	Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas. Blood Advances, 2020, 4, 141-153.	5.2	13
26	<i>CXCR4</i> mutation subtypes impact response and survival outcomes in patients with Waldenström macroglobulinaemia treated with ibrutinib. British Journal of Haematology, 2019, 187, 356-363.	2.5	73
27	Prognostic Impact of Tumor Spread Through Air Spaces in Non-small Cell Lung Cancers: a Meta-Analysis Including 3564 Patients. Pathology and Oncology Research, 2019, 25, 1303-1310.	1.9	43
28	Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Advances, 2019, 3, 3360-3374.	5.2	25
29	CXCR4 S338X clonality is an important determinant of ibrutinib outcomes in patients with Waldenström macroglobulinemia. Blood Advances, 2019, 3, 2800-2803.	5.2	27
30	Long survival in patients with Waldenström macroglobulinaemia diagnosed at a young age. British Journal of Haematology, 2019, 185, 799-802.	2.5	4
31	Low levels of von Willebrand markers associate with high serum IgM levels and improve with response to therapy, in patients with Waldenström macroglobulinaemia. British Journal of Haematology, 2019, 184, 1011-1014.	2.5	19
32	Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenström macroglobulinaemia. British Journal of Haematology, 2018, 181, 77-85.	2.5	41
33	BTKCys481Ser drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a paracrine mechanism. Blood, 2018, 131, 2047-2059.	1.4	61
34	Prospective Clinical Trial of Ixazomib, Dexamethasone, and Rituximab as Primary Therapy in Waldenström Macroglobulinemia. Clinical Cancer Research, 2018, 24, 3247-3252.	7.0	57
35	<i>MYD88</i> mutated and wild-type Waldenström's Macroglobulinemia: characterization of chromosome 6q gene losses and their mutual exclusivity with mutations in <i>CXCR4</i> . Haematologica, 2018, 103, e408-e411	3.5	30
36	<i><scp>MYD</scp>88</i> wildâ€type Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, andÂoverall survival. British Journal of Haematology, 2018, 180, 374-380.	2.5	83

#	Article	IF	CITATIONS
37	lbrutinib Monotherapy in Symptomatic, Treatment-NaÃ⁻ve Patients With Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2018, 36, 2755-2761.	1.6	142
38	Genomic Landscape of Waldenström Macroglobulinemia. Hematology/Oncology Clinics of North America, 2018, 32, 745-752.	2.2	16
39	A Novel HCK Inhibitor Kin-8193 Blocks BTK Activity in BTKCys481 Mutated Ibrutinib Resistant B-Cell Lymphomas Driven By Mutated MYD88. Blood, 2018, 132, 40-40.	1.4	9
40	Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Advances, 2018, 2, 2937-2946.	5.2	72
41	Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood, 2017, 129, 2519-2525.	1.4	115
42	Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia. British Journal of Haematology, 2017, 177, 717-725.	2.5	58
43	Novel approaches to targeting MYD88 in Waldenström macroglobulinemia. Expert Review of Hematology, 2017, 10, 739-744.	2.2	6
44	CXCL13 levels are elevated in patients with Waldenström macroglobulinemia, and are predictive of major response to ibrutinib. Haematologica, 2017, 102, e452-e455.	3.5	22
45	Idelalisib in Waldenström macroglobulinemia: high incidence of hepatotoxicity. Leukemia and Lymphoma, 2017, 58, 1002-1004.	1.3	31
46	Prospective, Multicenter Clinical Trial of Everolimus as Primary Therapy in Waldenstrom Macroglobulinemia (WMCTG 09-214). Clinical Cancer Research, 2017, 23, 2400-2404.	7.0	23
47	Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2017, 35, 994-1001.	1.6	76
48	Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood, 2016, 128, 827-838.	1.4	91
49	Future therapeutic options for patients with Waldenström macroglobulinemia. Best Practice and Research in Clinical Haematology, 2016, 29, 206-215.	1.7	4
50	HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127, 3237-3252.	1.4	93
51	Mechanisms Underlying Footshock and Psychological Stress-Induced Abrupt Awakening From Posttraumatic "Nightmares― International Journal of Neuropsychopharmacology, 2016, 19, pyv113.	2.1	13
52	Clonal architecture of <i><scp>CXCR</scp>4 </i> <scp>WHIM</scp> â€like mutations in Waldenström Macroglobulinaemia. British Journal of Haematology, 2016, 172, 735-744.	2.5	122
53	The <scp>BCL</scp> 2 antagonist <scp>ABT</scp> â€199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in <i><scp>CXCR</scp>4</i> ^{<i>Wildâ€type</i>} and <i><scp>CXCR</scp> Mutated Waldenstrom macroglobulinaemia cells. British Iournal of Haematology. 2015. 170. 134-138.</i>	2.5	63
54	Targeting the Spleen Tyrosine Kinase with Fostamatinib as a Strategy against Waldenström Macroglobulinemia. Clinical Cancer Research, 2015, 21, 2538-2545.	7.0	19

#	Article	IF	CITATIONS
55	A novel mutation of EYA4 in a large Chinese family with autosomal dominant middle-frequency sensorineural hearing loss by targeted exome sequencing. Journal of Human Genetics, 2015, 60, 299-304.	2.3	16
56	lbrutinib in Previously Treated Waldenström's Macroglobulinemia. New England Journal of Medicine, 2015, 372, 1430-1440.	27.0	810
57	<i><scp>CXCR</scp>4 </i> <scp>WHIM</scp> â€like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant <i><scp>MYD</scp>88</i> ^{L265P} â€directed survival signalling in <scp>W</scp> aldenström macroglobulinaemia cells. British Journal of Haematology, 2015, 168, 701-707.	2.5	95
58	The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood, 2014, 123, 1637-1646.	1.4	394
59	Proteomic analysis on infantile spasm and prenatal stress. Epilepsy Research, 2014, 108, 1174-1183.	1.6	2
60	Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood, 2014, 123, 2791-2796.	1.4	337
61	Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenstr¶m's macroglobulinemia. Blood, 2014, 124, 503-510.	1.4	168
62	Bone Marrow Microenvironment Regulates Alternative Splicing Events in Myeloma Cells through Downregulation of RNA Binding Protein Fox2. Blood, 2014, 124, 4714-4714.	1.4	0
63	MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood, 2013, 121, 2051-2058.	1.4	368
64	A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in WaldenstrA¶m macroglobulinemia. Blood, 2013, 122, 1222-1232.	1.4	306
65	Bone Marrow Microenvironment Affects The Pathogenesis Of Multiple Myeloma Through Downregulation Of Alternative Splicing Factor Fox2 In Myeloma Cells. Blood, 2013, 122, 3085-3085.	1.4	1
66	Carfilzomib, Rituximab and Dexamethasone (CaRD) Is Highly Active and Offers a Neuropathy Sparing Approach For Proteasome-Inhibitor Based Therapy In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 757-757.	1.4	6
67	Sp1 Inhibition Affects Cell Growth and Survival In Waldenstrom's Macroglobulinemia Through a MYD88-Independent Pathway. Blood, 2013, 122, 3065-3065.	1.4	Ο
68	MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia. New England Journal of Medicine, 2012, 367, 826-833.	27.0	1,142
69	Whole Genome Sequencing Identifies Recurring Somatic Mutations in the C-Terminal Domain of CXCR4, Including a Gain of Function Mutation in Waldenstrom's Macroglobinemia Blood, 2012, 120, 2715-2715.	1.4	1
70	MYD88 L265P Promotes Survival of Waldenstrom's Macroglobulinemia Cells by Activation of Bruton's Tyrosine Kinase. Blood, 2012, 120, 897-897.	1.4	1
71	Histone Deacetylase Inhibitors Demonstrate Significant Preclinical Activity as Single Agents, and in Combination with Bortezomib in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 152-156.	0.4	22
72	Dynamic Gene Expression Analysis Links Melanocyte Growth Arrest with Nevogenesis. Cancer Research, 2009, 69, 9029-9037.	0.9	1

#	Article	IF	CITATIONS
73	Inhibition of PAX3 by TGF-β Modulates Melanocyte Viability. Molecular Cell, 2008, 32, 554-563.	9.7	121
74	Loss of Xeroderma Pigmentosum C (Xpc) Enhances Melanoma Photocarcinogenesis in Ink4a-Arf–Deficient Mice. Cancer Research, 2007, 67, 5649-5657.	0.9	40
75	Expression Profiling of UVB Response in Melanocytes Identifies a Set of p53-Target Genes. Journal of Investigative Dermatology, 2006, 126, 2490-2506.	0.7	86
76	High-dose chemotherapy with autologous peripheral blood stem cell support in children with malignant diseases. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2005, 17, 288-290.	2.2	1
77	A Novel Methionine-53-Valine Mutation of p16 in a Hereditary Melanoma Kindred. Journal of Investigative Dermatology, 2004, 123, 574-575.	0.7	8