Valeska P Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640649/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
2	Sound absorption in Hilbert fractal and coiled acoustic metamaterials. Applied Physics Letters, 2022, 120, .	1.5	7
3	Manipulation of the crystalline phase diagram of hydrogen through nanoscale confinement effects in porous carbons. Nanoscale, 2022, 14, 7250-7261.	2.8	6
4	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11.1	82
5	Effect of pore geometry on ultra-densified hydrogen in microporous carbons. Carbon, 2021, 173, 968-979.	5.4	25
6	Effect of mono- and divalent extra-framework cations on the structure and accessibility of porosity in chabazite zeolites. CrystEngComm, 2021, 23, 857-863.	1.3	4
7	Advanced characterisation techniques: multi-scale, <i>in situ</i> , and time-resolved: general discussion. Faraday Discussions, 2021, 225, 152-167.	1.6	2
8	Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous and Mesoporous Materials, 2021, 314, 110777.	2.2	27
9	Kinetics and enthalpies of methane adsorption in microporous materials AX-21, MIL-101 (Cr) and TE7. Chemical Engineering Research and Design, 2021, 169, 153-164.	2.7	9
10	Hydrogen Adsorption in Metal–Organic Framework MIL-101(Cr)—Adsorbate Densities and Enthalpies from Sorption, Neutron Scattering, In Situ X-ray Diffraction, Calorimetry, and Molecular Simulations. ACS Applied Energy Materials, 2021, 4, 7839-7847.	2.5	2
11	Improved photodegradation of anionic dyes using a complex graphitic carbon nitride and iron-based metal–organic framework material. Faraday Discussions, 2021, 231, 81-96.	1.6	10
12	Materials breaking the rules: general discussion. Faraday Discussions, 2021, 225, 255-270.	1.6	0
13	Influence of Aromatic Structure on the Thermal Behaviour of Lignin. Waste and Biomass Valorization, 2020, 11, 2863-2876.	1.8	17
14	Using Supercritical CO2 in the Preparation of Metal-Organic Frameworks: Investigating Effects on Crystallisation. Crystals, 2020, 10, 17.	1.0	9
15	Nanoporous electrospun cellulose acetate butyrate nanofibres for oil sorption. Materials Letters, 2020, 261, 127116.	1.3	15
16	The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass. Materials Advances, 2020, 1, 3281-3291.	2.6	17
17	Controlling Protein Nanocage Assembly with Hydrostatic Pressure. Journal of the American Chemical Society, 2020, 142, 20640-20650.	6.6	17
18	Toward Process-Resilient Lignin-Derived Activated Carbons for Hydrogen Storage Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 2186-2195.	3.2	33

VALESKA P TING

#	Article	IF	CITATIONS
19	Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Letters, 2019, 11, 54.	14.4	87
20	Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Scientific Reports, 2019, 9, 10887.	1.6	37
21	Multifunctional composites: a metamaterial perspective. Multifunctional Materials, 2019, 2, 043001.	2.4	59
22	Application of Experimental Design to Hydrogen Storage: Optimisation of Lignin-Derived Carbons. Journal of Carbon Research, 2019, 5, 82.	1.4	6
23	Flexible ZIFs: probing guestâ€induced flexibility with CO ₂ , N ₂ and Ar adsorption. Journal of Chemical Technology and Biotechnology, 2019, 94, 3787-3792.	1.6	33
24	Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae. Dalton Transactions, 2018, 47, 1189-1201.	1.6	16
25	Hydrothermal Conversion of Lipid-Extracted Microalgae Hydrolysate in the Presence of Isopropanol and Steel Furnace Residues. Waste and Biomass Valorization, 2018, 9, 1867-1879.	1.8	9
26	Understanding the AC conductivity and permittivity of trapdoor chabazites for future development of next-generation gas sensors. Microporous and Mesoporous Materials, 2018, 260, 208-216.	2.2	11
27	Responsive cellulose-hydrogel composite ink for 4D printing. Materials and Design, 2018, 160, 108-118.	3.3	162
28	Mechanism of CO2 capture in nanostructured sodium amide encapsulated in porous silica. Surface and Coatings Technology, 2018, 350, 227-233.	2.2	7
29	Polynuclear Complexes as Precursor Templates for Hierarchical Microporous Graphitic Carbon: An Unusual Approach. ACS Applied Materials & Interfaces, 2018, 10, 25967-25971.	4.0	8
30	Regulation of Scaffold Cell Adhesion Using Artificial Membrane Binding Proteins. Macromolecular Bioscience, 2017, 17, 1600523.	2.1	12
31	Design and operation of an inexpensive, laboratory-scale, continuous hydrothermal liquefaction reactor for the conversion of microalgae produced during wastewater treatment. Fuel Processing Technology, 2017, 165, 102-111.	3.7	36
32	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. Faraday Discussions, 2017, 201, 87-99.	1.6	9
33	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
34	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
35	Controlled Formation of Hierarchical Metal–Organic Frameworks Using CO ₂ -Expanded Solvent Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 7887-7893.	3.2	32
36	Production of Biodiesel from Vietnamese Waste Coffee Beans: Biofuel Yield, Saturation and Stability are All Elevated Compared with Conventional Coffee Biodiesel. Waste and Biomass Valorization, 2017, 8, 1237-1245.	1.8	15

VALESKA P TING

#	Article	IF	CITATIONS
37	Mesoporous tertiary oxides via a novel amphiphilic approach. APL Materials, 2016, 4, 015701.	2.2	2
38	Mixed-linker approach in designing porous zirconium-based metal–organic frameworks with high hydrogen storage capacity. Chemical Communications, 2016, 52, 7826-7829.	2.2	31
39	Visible light promoted photocatalytic water oxidation: proton and electron collection via a reversible redox dye mediator. Catalysis Science and Technology, 2016, 6, 3718-3722.	2.1	11
40	Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons. Journal of CO2 Utilization, 2016, 16, 97-103.	3.3	65
41	Novel low energy hydrogen–deuterium isotope breakthrough separation using a trapdoor zeolite. Chemical Engineering Journal, 2016, 288, 161-168.	6.6	30
42	Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresource Technology, 2016, 207, 166-174.	4.8	52
43	Structure–property relationships in metal-organic frameworks for hydrogen storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 496, 77-85.	2.3	31
44	High-pressure adsorptive storage of hydrogen in MIL-101 (Cr) and AX-21 for mobile applications: Cryocharging and cryokinetics. Materials and Design, 2016, 89, 1086-1094.	3.3	24
45	Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44, 4290-4321.	18.7	406
46	Graphene oxide as a template for a complex functional oxide. CrystEngComm, 2015, 17, 6094-6097.	1.3	14
47	Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures. ACS Nano, 2015, 9, 8249-8254.	7.3	57
48	High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures. Chemical Engineering Journal, 2015, 272, 38-47.	6.6	20
49	Modelling the potential of adsorbed hydrogen for use in aviation. Microporous and Mesoporous Materials, 2015, 209, 135-140.	2.2	17
50	Visible light promoted photocatalytic water oxidation: effect of metal oxide catalyst composition and light intensity. Catalysis Science and Technology, 2015, 5, 4760-4764.	2.1	10
51	Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures. Adsorption, 2014, 20, 373-384.	1.4	23
52	Neutron powder diffraction – new opportunities in hydrogen location in molecular and materials structure. Crystallography Reviews, 2014, 20, 162-206.	0.4	13
53	Determining hydrogen positions in crystal engineered organic molecular complexes by joint neutron powder and single crystal X-ray diffraction. CrystEngComm, 2014, 16, 1232-1236.	1.3	16
54	Catalytic cracking of sterol-rich yeast lipid. Fuel, 2014, 130, 315-323.	3.4	8

Valeska P Ting

#	Article	IF	CITATIONS
55	Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 113-119.	2.3	16
56	One-step production of monolith-supported long carbon nanotube arrays. Carbon, 2013, 51, 327-334.	5.4	12
57	Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores. Adsorption, 2013, 19, 643-652.	1.4	29
58	Improving comparability of hydrogen storage capacities ofÂnanoporous materials. International Journal of Hydrogen Energy, 2012, 37, 2728-2736.	3.8	22
59	Probing hydrogen positions in hydrous compounds: information from parametric neutron powder diffraction studies. Physical Chemistry Chemical Physics, 2012, 14, 6914.	1.3	4
60	Analysis of hydrogen storage in nanoporous materials for low carbon energy applications. Faraday Discussions, 2011, 151, 59.	1.6	26
61	Cisplatin: Polymorphism and Structural Insights into an Important Chemotherapeutic Drug. Angewandte Chemie - International Edition, 2010, 49, 9408-9411.	7.2	41
62	The kinetics of bulk hydration of the disaccharides α-lactose and trehalose by in situ neutron powder diffraction. MedChemComm, 2010, 1, 345.	3.5	1
63	Structural isotope effects in metal hydrides and deuterides. Physical Chemistry Chemical Physics, 2010, 12, 2083.	1.3	42
64	Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. Chemical Communications, 2009, , 2973.	2.2	46
65	In situ neutron powder diffraction and structure determination in controlled humidities. Chemical Communications, 2009, , 7527.	2.2	13
66	A structure and phase analysis investigation of the "1:1―ordered A2InNbO6 perovskites (A=Ca2+, Sr2+,) Tj	ЕТ <u>О</u> ОО() rgBT /Overlc
67	A temperature-dependent structural investigation of electrical transitions in A3conb2o9 perovskites (A=Ca2+, Sr2+, Ba2+). Physica B: Condensed Matter, 2006, 385-386, 558-560.	1.3	1
68	Stacking fault disorder and its diffraction consequences in Ba3MNb2O9 (M=Co and Mn) 1:2 triple perovskites. Physica B: Condensed Matter, 2006, 385-386, 564-566.	1.3	2
69	Old friends in a new light: "SnSb―revisited. Journal of Solid State Chemistry, 2006, 179, 404-412.	1.4	25
70	Local crystal chemistry, structured diffuse scattering and the dielectric properties of (Bi1âr'xYx)2(MIIINbV)O7 (M=Fe3+, In3+) Bi-pyrochlores. Journal of Solid State Chemistry, 2006, 179, 2495-2505.	1.4	28
71	Thermal expansion and cation disorder in Bi2InNbO7. Journal of Solid State Chemistry, 2005, 178, 1575-1579.	1.4	21
72	A combined diffraction and dielectric properties investigation of Ba3MnNb2O9 complex perovskites. Journal of Solid State Chemistry, 2005, 178, 3389-3395.	1.4	18

Valeska P Ting

#	Article	IF	CITATIONS
73	An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:2 B site ordered A3CoNb2O9 perovskites (A=Ca2+, Sr2+, Ba2+). Journal of Solid State Chemistry, 2004, 177, 2295-2304.	1.4	23
74	An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:1 ordered A2InNbO6 double perovskites (A=Ca2+, Sr2+, Ba2+). Journal of Solid State Chemistry, 2004, 177, 979-986.	1.4	26
75	A structure, conductivity and dielectric properties investigation of A3CoNb2O9 (A=Ca2+, Sr2+, Ba2+) triple perovskites. Journal of Solid State Chemistry, 2004, 177, 4428-4442.	1.4	26
76	An Electron and X-Ray Diffraction Investigation of Ni1+xTe2 and Ni1+xSe2CdI2/NiAs Type Solid Solution Phases. Journal of Solid State Chemistry, 2001, 161, 266-273.	1.4	18
77	Synthesis of porous high-temperature superconductors via a melamine formaldehyde sacrificial template. Nanoscale Advances, 0, , .	2.2	1