Kim Prather

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8640595/kim-prather-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

271	20,142	78	134
papers	citations	h-index	g-index
299	23,212 ext. citations	9.1	7.07
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
271	The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): overview and experimental methods <i>Environmental Sciences: Processes and Impacts</i> , 2022 ,	4.3	2
270	Marine gas-phase sulfur emissions during an induced phytoplankton bloom. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1601-1613	6.8	2
269	Transmission of SARS-CoV-2: still up in the air - Authors' reply <i>Lancet, The</i> , 2022 , 399, 519-520	40	1
268	Grazer-induced changes in molecular signatures of cyanobacteria. Algal Research, 2022, 61, 102575	5	1
267	Biologically Induced Changes in the Partitioning of Submicron Particulates Between Bulk Seawater and the Sea Surface Microlayer. <i>Geophysical Research Letters</i> , 2022 , 49, e2021GL094587	4.9	O
266	Online shape and density measurement of single aerosol particles. <i>Journal of Aerosol Science</i> , 2022 , 159, 105880	4.3	О
265	Factors controlling the transfer of biogenic organic species from seawater to sea spray aerosol <i>Scientific Reports</i> , 2022 , 12, 3580	4.9	2
264	Assessment of styrene-divinylbenzene polymer (PPL) solid-phase extraction and non-targeted tandem mass spectrometry for the analysis of xenobiotics in seawater. <i>Limnology and Oceanography: Methods</i> , 2022 , 20, 89-101	2.6	1
263	Size-Dependent Morphology, Composition, Phase State, and Water Uptake of Nascent Submicrometer Sea Spray Aerosols during a Phytoplankton Bloom. <i>ACS Earth and Space Chemistry</i> , 2022 , 6, 116-130	3.2	2
262	SARS-CoV-2 indoor air transmission is a threat that can be addressed with science. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
261	Development of Heterogeneous Ice Nucleation Rate Coefficient Parameterizations From Ambient Measurements. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL095359	4.9	3
260	Atmospheric Benzothiazoles in a Coastal Marine Environment. <i>Environmental Science & Environmental Sci</i>	10.3	1
259	The World Health Network: a global citizens' initiative. <i>Lancet, The</i> , 2021 , 398, 1567-1568	40	O
258	Acidity across the interface from the ocean surface to sea spray aerosol. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	21
257	School reopening without robust COVID-19 mitigation risks accelerating the pandemic. <i>Lancet, The</i> , 2021 , 397, 1177-1178	40	23
256	Constraining the atmospheric limb of the plastic cycle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	62
255	A paradigm shift to combat indoor respiratory infection. <i>Science</i> , 2021 , 372, 689-691	33.3	73

(2020-2021)

254	Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater. <i>Chemosphere</i> , 2021 , 271, 129450	8.4	14
253	Ten scientific reasons in support of airborne transmission of SARS-CoV-2. <i>Lancet, The</i> , 2021 , 397, 1603-1	16405	294
252	Cation-Driven Lipopolysaccharide Morphological Changes Impact Heterogeneous Reactions of Nitric Acid with Sea Spray Aerosol Particles. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 5023-5029	6.4	1
251	Airborne transmission pathway for coastal water pollution. <i>PeerJ</i> , 2021 , 9, e11358	3.1	3
250	Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 9031-9045	6.8	2
249	Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. <i>Nature Communications</i> , 2021 , 12, 3832	17.4	22
248	Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): What We Know. <i>Clinical Infectious Diseases</i> , 2021 , 73, 1924-1926	11.6	27
247	Importance of Supermicron Ice Nucleating Particles in Nascent Sea Spray. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL089633	4.9	12
246	Tandem Fluorescence Measurements of Organic Matter and Bacteria Released in Sea Spray Aerosols. <i>Environmental Science & Environmental Science & Envir</i>	10.3	6
245	Airborne transmission of respiratory viruses. <i>Science</i> , 2021 , 373,	33.3	160
245	Airborne transmission of respiratory viruses. <i>Science</i> , 2021 , 373, Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	33.3	
	Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the</i>		4
244	Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud	11.5	4
244	Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. <i>ACS Central Science</i> , 2020 , 6, 2259-2266	11.5 16.8 33-3	4
244 243 242	Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. <i>ACS Central Science</i> , 2020 , 6, 2259-2266 Reducing transmission of SARS-CoV-2. <i>Science</i> , 2020 , 368, 1422-1424 Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent CoreBhell	11.5 16.8 33-3	4 16 441
244243242241	Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. <i>ACS Central Science</i> , 2020 , 6, 2259-2266 Reducing transmission of SARS-CoV-2. <i>Science</i> , 2020 , 368, 1422-1424 Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent CoreBhell Sea Spray Aerosols during Two Phytoplankton Blooms. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 650-660 Best practices for precipitation sample storage for offline studies of ice nucleation in marine and	11.5 16.8 33.3	4 16 441 13
244 243 242 241 240	Continuous measurements of volatile gases as detection of algae crop health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. <i>ACS Central Science</i> , 2020 , 6, 2259-2266 Reducing transmission of SARS-CoV-2. <i>Science</i> , 2020 , 368, 1422-1424 Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent CoreBhell Sea Spray Aerosols during Two Phytoplankton Blooms. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 650-660 Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 6473-6486 Liquid Sampling-Atmospheric Pressure Glow Discharge Ionization as a Technique for the	11.5 16.8 33.3 3.2	4 16 441 13

236	Mario J. Molina (1943\(\textit{0}\)020). <i>Science</i> , 2020 , 370, 1170-1170	33.3	19
235	Physicochemical Mixing State of Sea Spray Aerosols: Morphologies Exhibit Size Dependence. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1604-1611	3.2	6
234	Ejection of Dust From the Ocean as a Potential Source of Marine Ice Nucleating Particles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD033073	4.4	7
233	Marine Bacteria Affect Saccharide Enrichment in Sea Spray Aerosol during a Phytoplankton Bloom. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1638-1649	3.2	7
232	Biological Influence on II3C and Organic Composition of Nascent Sea Spray Aerosol. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1686-1699	3.2	8
231	Characteristics of Ice Nucleating Particles in and Around California Winter Storms. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 11530-11551	4.4	11
230	Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 4193-4210	6.8	8
229	Shedding Light on Photosensitized Reactions within Marine-Relevant Organic Thin Films. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1614-1623	3.2	13
228	Multistep Phase Transitions in Sea Surface Microlayer Droplets and Aerosol Mimics using Microfluidic Wells. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1260-1267	3.2	10
227	Detection of Active Microbial Enzymes in Nascent Sea Spray Aerosol: Implications for Atmospheric Chemistry and Climate. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 171-177	11	19
226	The Old and the New: Aging of Sea Spray Aerosol and Formation of Secondary Marine Aerosol through OH Oxidation Reactions. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2307-2314	3.2	11
225	Direct Online Mass Spectrometry Measurements of Ice Nucleating Particles at a California Coastal Site. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 12157-12172	4.4	10
224	Impacts of Lipase Enzyme on the Surface Properties of Marine Aerosols. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3839-3849	6.4	15
223	The Cloud Nucleating Properties and Mixing State of Marine Aerosols Sampled along the Southern California Coast. <i>Atmosphere</i> , 2018 , 9, 52	2.7	11
222	Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1559-1569	4.3	30
221	Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry. <i>ACS Central Science</i> , 2018 , 4, 1617-1623	16.8	21
220	Contrasting Local and Long-Range Transported Warm Ice-Nucleating Particles During an Atmospheric River in Coastal California, USA 2018 ,		1
219	Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. <i>Nature Communications</i> , 2018 , 9, 2017	17.4	61

218	A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles. Journals of the Atmospheric Sciences, 2018 , 75, 2405-2423	2.1	46
217	Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. <i>CheM</i> , 2017 , 2, 655-667	16.2	85
216	The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 697	7 1 16598	3 96
215	Sea Spray Aerosol: The Chemical Link between the Oceans, Atmosphere, and Climate. <i>Accounts of Chemical Research</i> , 2017 , 50, 599-604	24.3	60
214	Effect of Structural Heterogeneity in Chemical Composition on Online Single-Particle Mass Spectrometry Analysis of Sea Spray Aerosol Particles. <i>Environmental Science & Environmental Science & Envir</i>	10.3	15
213	Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	26
212	FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 1323-1334	4	18
211	Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol. <i>Analytical Chemistry</i> , 2017 , 89, 10162-10170	7.8	12
210	A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments. <i>Journals of the Atmospheric Sciences</i> , 2017 , 74, 151-166	2.1	68
209	Biological Impacts on Carbon Speciation and Morphology of Sea Spray Aerosol. <i>ACS Earth and Space Chemistry</i> , 2017 , 1, 551-561	3.2	23
208	Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 149	1 ⁶ .8 1-1509) ¹⁶
207	Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 2613-2626	4	14
206	Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 9003-9018	6.8	23
205	Sea spray aerosol as a unique source of ice nucleating particles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5797-803	11.5	255
204	Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol. <i>Environmental Science & Environmental Scie</i>	10.3	108
203	Tools for the Microbiome: Nano and Beyond. <i>ACS Nano</i> , 2016 , 10, 6-37	16.7	99
202	CalWater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S. West Coast Precipitation in a Changing Climate. <i>Bulletin of the American Meteorological Society</i> , 2016 , 97, 1209-1228	6.1	77
201	Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5781	- 191 05	314

200	Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy. <i>ACS Central Science</i> , 2016 , 2, 40-47	16.8	55
199	Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol. <i>Geophysical Research Letters</i> , 2016 , 43, 9975-9983	4.9	40
198	Enrichment of Saccharides and Divalent Cations in Sea Spray Aerosol During Two Phytoplankton Blooms. <i>Environmental Science & Environmental Science & </i>	10.3	68
197	The relationships between insoluble precipitation residues, clouds, and precipitation over California southern Sierra Nevada during winter storms. <i>Atmospheric Environment</i> , 2016 , 140, 298-310	5.3	12
196	Heterogeneous Chemistry of Lipopolysaccharides with Gas-Phase Nitric Acid: Reactive Sites and Reaction Pathways. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 6444-50	2.8	14
195	Advancing Model Systems for Fundamental Laboratory Studies of Sea Spray Aerosol Using the Microbial Loop. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 8860-70	2.8	48
194	A tribute to Mario Molina. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4277-8	2.8	1
193	Microbial Control of Sea Spray Aerosol Composition: A Tale of Two Blooms. <i>ACS Central Science</i> , 2015 , 1, 124-31	16.8	132
192	The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol. <i>ACS Central Science</i> , 2015 , 1, 132-41	16.8	37
191	The Impacts of California San Francisco Bay Area Gap on Precipitation Observed in the Sierra Nevada during HMT and CalWater. <i>Journal of Hydrometeorology</i> , 2015 , 16, 1048-1069	3.7	27
190	Direct night-time ejection of particle-phase reduced biogenic sulfur compounds from the ocean to the atmosphere. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	7
189	Comparison of the mixing state of long-range transported Asian and African mineral dust. <i>Atmospheric Environment</i> , 2015 , 115, 19-25	5.3	39
188	Chemistry and related properties of freshly emitted sea spray aerosol. <i>Chemical Reviews</i> , 2015 , 115, 438	3 3-99	220
187	Online analysis of single cyanobacteria and algae cells under nitrogen-limited conditions using aerosol time-of-flight mass spectrometry. <i>Analytical Chemistry</i> , 2015 , 87, 8039-46	7.8	18
186	Role of Organic Coatings in Regulating N2O5 Reactive Uptake to Sea Spray Aerosol. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 11683-92	2.8	27
185	Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California's central Sierra Nevada. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6535-6548	6.8	31
184	Cryo-Transmission Electron Microscopy of Sea Spray Aerosols. <i>Microscopy and Microanalysis</i> , 2015 , 21, 633-634	0.5	
183	Characterization of core-shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry. <i>Analyst, The</i> , 2015 , 140, 1510-5	5	11

182	Development of a High-Pressure Aerodynamic Lens for Focusing Large Particles (410 fb) into the Aerosol Time-of-Flight Mass Spectrometer. <i>Aerosol Science and Technology</i> , 2014 , 48, 948-956	3.4	7
181	Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2493-5	50 0 4	55
180	On the role of particle inorganic mixing state in the reactive uptake of N2O5 to ambient aerosol particles. <i>Environmental Science & Environmental Sci</i>	10.3	53
179	Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?. <i>Pure and Applied Geophysics</i> , 2014 , 171, 2443-2459	2.2	7
178	Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel. <i>Environmental Science & Environmental Science & Environment</i>	10.3	48
177	Chemical properties of insoluble precipitation residue particles. <i>Journal of Aerosol Science</i> , 2014 , 76, 13-27	4.3	28
176	Corrigendum to Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust published in Atmos. Chem. Phys., 14, 81🛮 01, 2014. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3063-3064	6.8	3
175	Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 81-101	6.8	77
174	Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes 2014 ,		3
173	Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 3667-3683	4	70
172	Impacts of Aerosol Aging on Laser Desorption/Ionization in Single-Particle Mass Spectrometers. <i>Aerosol Science and Technology</i> , 2014 , 48, 1050-1058	3.4	17
171	Polluting of winter convective clouds upon transition from ocean inland over central California: Contrasting case studies. <i>Atmospheric Research</i> , 2014 , 135-136, 112-127	5.4	16
170	Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. <i>Science</i> , 2013 , 339, 1572-8	33.3	393
169	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866	4.4	178
168	Shipboard measurements of gaseous elemental mercury along the coast of Central and Southern California. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 208-219	4.4	13
167	Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. <i>Inorganic Chemistry</i> , 2013 , 52, 4011-6	5.1	184
166	Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions. <i>Environmental Science & Environmental Scie</i>	10.3	139
165	Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. <i>Physical Chemistry Chemical Physics</i> 2013 15, 6206-14	3.6	79

164	Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. <i>Environmental Science & Environmental S</i>	10.3	74
163	Size-resolved sea spray aerosol particles studied by vibrational sum frequency generation. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 6589-601	2.8	38
162	Inside versus outside: ion redistribution in nitric acid reacted sea spray aerosol particles as determined by single particle analysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14528-31	16.4	80
161	Laboratory measurements of ice nuclei concentrations from ocean water spray 2013,		1
160	Improvements to an Empirical Parameterization of Heterogeneous Ice Nucleation and Its Comparison with Observations. <i>Journals of the Atmospheric Sciences</i> , 2013 , 70, 378-409	2.1	106
159	Evaluation of aerosol mixing state classes in the GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9834-9844	4.4	34
158	Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 8553-8565	4.4	76
157	Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 7550-5	11.5	345
156	Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 9337-9350	6.8	91
155	The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9819-9833	4.4	26
154	Composition and hygroscopicity of the Los Angeles Aerosol: CalNex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 3016-3036	4.4	78
153	The impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V Atlantis during CalNex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 5003	- \$0 17	29
152	A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 1085-1094	4	77
151	Mass spectrometry of atmospheric aerosolsrecent developments and applications. Part I: Off-line mass spectrometry techniques. <i>Mass Spectrometry Reviews</i> , 2012 , 31, 1-16	11	75
150	Mass spectrometry of atmospheric aerosolsrecent developments and applications. Part II: On-line mass spectrometry techniques. <i>Mass Spectrometry Reviews</i> , 2012 , 31, 17-48	11	149
149	Seasonal comparisons of single-particle chemical mixing state in Riverside, CA. <i>Atmospheric Environment</i> , 2012 , 59, 587-596	5.3	58
148	Postsynthetic ligand and cation exchange in robust metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18082-8	16.4	606
147	Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/	'a	7

(2010-2012)

146	Postsynthetic ligand exchange as a route to functionalization of IhertImetalBrganic frameworks. <i>Chemical Science</i> , 2012 , 3, 126-130	9.4	357
145	Ice in Clouds Experiment[layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds. <i>Journals of the Atmospheric Sciences</i> , 2012 , 69, 1066-1079	2.1	48
144	The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10989-11002	6.8	51
143	Direct N₂O₅ reactivity measurements at a polluted coastal site. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2959-2968	6.8	56
142	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7647-7687	6.8	79
141	Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. <i>Journal of Geophysical Research</i> , 2011 , 116,		54
140	Detection of Asian dust in California orographic precipitation. <i>Journal of Geophysical Research</i> , 2011 , 116,		81
139	Exploring geophysical processes influencing U.S. West Coast precipitation and water supply. <i>Eos</i> , 2011 , 92, 352-352	1.5	
138	Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks. <i>Chemical Communications</i> , 2011 , 47, 7629-31	5.8	67
137	Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. <i>Biogeosciences</i> , 2011 , 8, 301-309	4.6	51
136	Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12549-12565	6.8	120
135	Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting. <i>Atmospheric Environment</i> , 2011 , 45, 7462-7469	5.3	41
134	Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. <i>Environmental Science & Environmental Science</i>	10.3	52
133	Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry - part 1: single particle atmospheric observations in Atlanta. <i>Environmental Science & Environmental Science </i>	10.3	108
132	Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry-part 2: temporal variability and formation mechanisms. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	69
131	Approach for measuring the chemistry of individual particles in the size range critical for cloud formation. <i>Analytical Chemistry</i> , 2011 , 83, 2271-8	7.8	14
130	Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles. <i>Aerosol Science and Technology</i> , 2010 , 44, 830-846	3.4	39
129	In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds. Journals of the Atmospheric Sciences, 2010, 67, 2451-2468	2.1	42

128	Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud. <i>Journals of the Atmospheric Sciences</i> , 2010 , 67, 2417-2436	2.1	81
127	Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds. <i>Journals of the Atmospheric Sciences</i> , 2010 , 67, 2437-2450	2.1	46
126	Composition and Morphology of Individual Combustion, Biomass Burning, and Secondary Organic Particle Types Obtained Using Urban and Coastal ATOFMS and STXM-NEXAFS Measurements. <i>Aerosol Science and Technology</i> , 2010 , 44, 551-562	3.4	19
125	Aircraft measurements of vertical profiles of aerosol mixing states. <i>Journal of Geophysical Research</i> , 2010 , 115,		88
124	Observation of playa salts as nuclei in orographic wave clouds. <i>Journal of Geophysical Research</i> , 2010 , 115,		50
123	Real-Time detection and mixing state of methanesulfonate in single particles at an inland urban location during a phytoplankton bloom. <i>Environmental Science & Environmental </i>	10.3	71
122	Characterization of the single particle mixing state of individual ship plume events measured at the Port of Los Angeles. <i>Environmental Science & Environmental Science & Env</i>	10.3	109
121	Sources and properties of Amazonian aerosol particles. <i>Reviews of Geophysics</i> , 2010 , 48,	23.1	237
120	Real-time, single-particle volatility, size, and chemical composition measurements of aged urban aerosols. <i>Environmental Science & Environmental Scie</i>	10.3	73
119	In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11872-7	11.5	342
118	Our current understanding of the impact of aerosols on climate change. <i>ChemSusChem</i> , 2009 , 2, 377-9	8.3	9
117	In situ detection of biological particles in cloud ice-crystals. <i>Nature Geoscience</i> , 2009 , 2, 398-401	18.3	348
116	Seasonal volatility dependence of ambient particle phase amines. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 5276-81	10.3	105
115	Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. <i>Analytical Chemistry</i> , 2009 , 81, 1792-800	7.8	86
114	Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	111
113	Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7826-37	3.6	70
112	Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3303-3316	6.8	223
111	Source apportionment of 1 h semi-continuous data during the 2005 Study of Organic Aerosols in Riverside (SOAR) using positive matrix factorization. <i>Atmospheric Environment</i> , 2008 , 42, 2706-2719	5.3	36

110	Using mass spectral source signatures to apportion exhaust particles from gasoline and diesel powered vehicles in a freeway study using UF-ATOFMS. <i>Atmospheric Environment</i> , 2008 , 42, 568-581	5.3	61
109	Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. <i>Atmospheric Environment</i> , 2008 , 42, 3130-3142	5.3	106
108	Comparison of two cluster analysis methods using single particle mass spectra. <i>Atmospheric Environment</i> , 2008 , 42, 881-892	5.3	23
107	Analysis of atmospheric aerosols. <i>Annual Review of Analytical Chemistry</i> , 2008 , 1, 485-514	12.5	120
106	Size-resolved chemical composition of aerosol particles during a monsoonal transition period over the Indian Ocean. <i>Journal of Geophysical Research</i> , 2008 , 113,		39
105	Chemically segregated optical and microphysical properties of ambient aerosols measured in a single-particle mass spectrometer. <i>Journal of Geophysical Research</i> , 2008 , 113,		56
104	Gold Nanoparticles as a Matrix for Visible-Wavelength Single-Particle Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Biomolecules. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4083-4090	3.8	37
103	Characterization of aerosols containing Zn, Pb, and Cl from an industrial region of Mexico City. <i>Environmental Science & Environmental Science & Envi</i>	10.3	128
102	Detection of Ambient Ultrafine Aerosols by Single Particle Techniques During the SOAR 2005 Campaign. <i>Aerosol Science and Technology</i> , 2008 , 42, 674-684	3.4	16
101	The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 5649-5667	6.8	151
100	Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 4499-4516	6.8	217
99	Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow. <i>Environmental Science & Environmental Science & Environ</i>	10.3	149
98	Real-time, single-particle measurements of oligomers in aged ambient aerosol particles. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	141
97	Trace gas and particulate emissions from the 2003 southern California wildfires. <i>Journal of Geophysical Research</i> , 2007 , 112,		41
96	Analysis of rainwater samples: Comparison of single particle residues with ambient particle chemistry from the northeast Pacific and Indian oceans. <i>Journal of Geophysical Research</i> , 2007 , 112,		20
95	Aerosol time-of-flight mass spectrometry data analysis: a benchmark of clustering algorithms. <i>Analytica Chimica Acta</i> , 2007 , 585, 38-54	6.6	60
94	Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment. <i>Atmospheric Environment</i> , 2007 , 41, 3841-3852	5.3	62
93	Mineral dust is a sink for chlorine in the marine boundary layer. <i>Atmospheric Environment</i> , 2007 , 41, 71	66 ₅ 7 ₃ 179	96

92	Direct observations of the atmospheric processing of Asian mineral dust. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 1213-1236	6.8	361
91	Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles. <i>Environmental Science & Environmental Scienc</i>	10.3	75
90	Impact of biomass emissions on particle chemistry during the California Regional Particulate Air Quality Study. <i>International Journal of Mass Spectrometry</i> , 2006 , 258, 142-150	1.9	46
89	Comparison of oil and fuel particle chemical signatures with particle emissions from heavy and light duty vehicles. <i>Atmospheric Environment</i> , 2006 , 40, 5224-5235	5.3	81
88	Instrument Busy Time and Mass Measurement using Aerosol Time-of-Flight Mass Spectrometry. <i>Aerosol Science and Technology</i> , 2006 , 40, 615-626	3.4	11
87	Using ATOFMS to Determine OC/EC Mass Fractions in Particles. <i>Aerosol Science and Technology</i> , 2006 , 40, 585-594	3.4	79
86	Real-Time Characterization of the Composition of Individual Particles Emitted From Ultrafine Particle Concentrators. <i>Aerosol Science and Technology</i> , 2006 , 40, 437-455	3.4	19
85	Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements. <i>Analytical Chemistry</i> , 2006 , 78, 6169-78	7.8	66
84	Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry. <i>Environmental Science & Environmental &</i>	10.3	111
83	Characterization of Asian Dust during ACE-Asia. <i>Global and Planetary Change</i> , 2006 , 52, 23-56	4.2	170
82	Extending ATOFMS measurements to include refractive index and density. <i>Analytical Chemistry</i> , 2005 , 77, 6535-41	7.8	42
81	Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. <i>Analytical Chemistry</i> , 2005 , 77, 3861-85	7.8	161
80	Determination of single particle mass spectral signatures from light-duty vehicle emissions. <i>Environmental Science & Environmental Science & Environm</i>	10.3	113
79	Predicting bulk ambient aerosol compositions from ATOFMS data with ART-2a and multivariate analysis. <i>Analytica Chimica Acta</i> , 2005 , 549, 179-187	6.6	24
78	Stability of single particle tracers for differentiating between heavy- and light-duty vehicle emissions. <i>Atmospheric Environment</i> , 2005 , 39, 2889-2901	5.3	13
77	ATOFMS Characterization of Individual Model Aerosol Particles Used for Exposure Studies. <i>Aerosol Science and Technology</i> , 2005 , 39, 400-407	3.4	11
76	Improvements in ion signal reproducibility obtained using a homogeneous laser beam for on-line laser desorption/ionization of single particles. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 1525-33	2.2	49
75	Characterization of an Ambient Coarse Particle Concentrator Used for Human Exposure Studies: Aerosol Size Distributions, Chemical Composition, and Concentration Enrichment. <i>Aerosol Science and Technology</i> , 2004 , 38, 1123-1137	3.4	22

(2001-2004)

74	MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials. <i>Analytical Chemistry</i> , 2004 , 76, 6734-42	7.8	90	
73	Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. <i>Analytical Chemistry</i> , 2004 , 76, 712-9	7.8	149	
72	Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. <i>Journal of Geophysical Research</i> , 2004 , 109,		86	
71	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004 , 109,		74	
70	Hydroxymethanesulfonate as a tracer for fog processing of individual aerosol particles. <i>Atmospheric Environment</i> , 2003 , 37, 1033-1043	5.3	64	
69	Ambient single particle analysis in Riverside, California by aerosol time-of-flight mass spectrometry during the SCOS97-NARSTO. <i>Atmospheric Environment</i> , 2003 , 37, 239-258	5.3	58	
68	Detection of pesticide residues on individual particles. <i>Analytical Chemistry</i> , 2003 , 75, 49-56	7.8	20	
67	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. <i>Journal of Geophysical Research</i> , 2003 , 108,		78	
66	Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 1. Measurements. <i>Journal of Geophysical Research</i> , 2003 , 108,		78	
65	Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures. <i>Journal of Geophysical Research</i> , 2003 , 108,		53	
64	Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. <i>Journal of Geophysical Research</i> , 2003 , 108,		94	
63	Recent Advances and Some Remaining Challenges in Analytical Chemistry of the Atmosphere. <i>Analytical Chemistry</i> , 2003 , 75, 2929-2940	7.8	43	
62	A field-based approach for deterimining ATOFMS instrument sensitities to ammonium and nitrate. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	60	
61	Effects of meteorological conditions on aerosol composition and mixing state in Bakersfield, CA. <i>Environmental Science & Environmental Science & Envi</i>	10.3	51	
60	Evaluation of an air quality model for the size and composition of source-oriented particle classes. <i>Environmental Science & Environmental Science & </i>	10.3	17	
59	Reproducibility of Single Particle Chemical Composition during a Heavy Duty Diesel Truck Dynamometer Study. <i>Aerosol Science and Technology</i> , 2002 , 36, 1139-1141	3.4	16	
58	Source apportionment of gasoline and diesel by multivariate calibration based on single particle mass spectral data. <i>Analytica Chimica Acta</i> , 2001 , 446, 327-341	6.6	22	
57	Real-time measurements of the chemical composition of size-resolved particles during a Santa Ana wind episode, California USA. <i>Atmospheric Environment</i> , 2001 , 35, 3229-3240	5.3	52	

56	The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. <i>Science</i> , 2001 , 291, 1031-6	33.3	599
55	Continuous measurements of size-resolved particle chemistry during INDOEX-Intensive Field Phase 99. <i>Journal of Geophysical Research</i> , 2001 , 106, 28607-28627		70
54	Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. <i>Journal of Geophysical Research</i> , 2001 , 106, 28371-28398		1041
53	Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry. <i>Environmental Science & Environmental Science & En</i>	10.3	186
52	Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory. <i>Journal of Geophysical Research</i> , 2001 , 106, 28711-28718		61
51	Improved Lower Particle Size Limit for Aerosol Time-of-Flight Mass Spectrometry. <i>Aerosol Science and Technology</i> , 2001 , 34, 381-385	3.4	9
50	Quantification of ATOFMS data by multivariate methods. <i>Analytical Chemistry</i> , 2001 , 73, 3535-41	7.8	39
49	Source apportionment of fine particulate matter by clustering single-particle data: tests of receptor model accuracy. <i>Environmental Science & Environmental Science & Environ</i>	10.3	45
48	Real-time single particle mass spectrometry: a historical review of a quarter century of the chemical analysis of aerosols. <i>Mass Spectrometry Reviews</i> , 2000 , 19, 248-74	11	209
47	Single particle analysis of suspended soil dust from Southern California. <i>Atmospheric Environment</i> , 2000 , 34, 1811-1820	5.3	86
46	Single Particle Characterization of Automobile and Diesel Truck Emissions in the Caldecott Tunnel. <i>Aerosol Science and Technology</i> , 2000 , 32, 152-163	3.4	63
45	Variations in the Size and Chemical Composition of Nitrate-Containing Particles in Riverside, CA. <i>Aerosol Science and Technology</i> , 2000 , 33, 71-86	3.4	48
44	Relative sensitivity factors for alkali metal and ammonium cations in single-particle aerosol time-of-flight mass spectra. <i>Analytical Chemistry</i> , 2000 , 72, 416-22	7.8	155
43	Particle Detection Efficiencies of Aerosol Time of Flight Mass Spectrometers under Ambient Sampling Conditions. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	97
42	Interpretation of mass spectra from organic compounds in aerosol time-of-flight mass spectrometry. <i>Analytical Chemistry</i> , 2000 , 72, 3553-62	7.8	151
41	Evolution of Atmospheric Particles along Trajectories Crossing the Los Angeles Basin. <i>Environmental Science & Environmental S</i>	10.3	96
40	Introduction: Online Single Particle Analysis. Aerosol Science and Technology, 2000, 33, 1-2	3.4	4
39	Classification of Single Particles Analyzed by ATOFMS Using an Artificial Neural Network, ART-2A. <i>Analytical Chemistry</i> , 1999 , 71, 860-865	7.8	273

38	Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species. <i>Environmental Science & Environmental Science</i>	10.3	190
37	Size and Composition Distribution of Atmospheric Particles in Southern California. <i>Environmental Science & Environmental Scie</i>	10.3	90
36	Mass spectrometry of aerosols. <i>Chemical Reviews</i> , 1999 , 99, 3007-36	68.1	188
35	Coupling two-step laser desorption/ionization with aerosol time-of-flight mass spectrometry for the analysis of individual organic particles. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 1068-1073	3.5	102
34	Time-of-flight mass spectrometry methods for real time analysis of individual aerosol particles. <i>TrAC - Trends in Analytical Chemistry</i> , 1998 , 17, 346-356	14.6	24
33	Single particle analysis of transient variations occurring in atmospheric aerosols. <i>Journal of Aerosol Science</i> , 1998 , 29, S1185-S1186	4.3	
32	Determination of the particle counting efficiency and chemical sensitivities of an aerosol time of flight mass spectrometer under ambient sampling conditions. <i>Journal of Aerosol Science</i> , 1998 , 29, S11	95 ⁴ 3 ³ 11	96
31	Single Particle Characterization of Albuterol Metered Dose Inhaler Aerosol in Near Real-Time. <i>Aerosol Science and Technology</i> , 1998 , 29, 294-306	3.4	19
30	Direct observation of heterogeneous chemistry in the atmosphere. <i>Science</i> , 1998 , 279, 1184-7	33.3	308
29	Aerosol Time-of-Flight Mass Spectrometry: A New Method for Performing Real-Time Characterization of Aerosol Particles. <i>Journal of Occupational and Environmental Hygiene</i> , 1998 , 13, 43	9-443	8
28	Air pollution: the role of particles. <i>Physics World</i> , 1998 , 11, 39-44	0.5	11
27	Real-Time Monitoring of Pyrotechnically Derived Aerosol Particles in the Troposphere. <i>Analytical Chemistry</i> , 1997 , 69, 1808-1814	7.8	110
26	On-Line Characterization of Individual Particles from Automobile Emissions. <i>Environmental Science & Emp; Technology</i> , 1997 , 31, 3074-3080	10.3	75
25	Real-time single particle monitoring of a relative increase in marine aerosol concentration during winter rainstorms. <i>Geophysical Research Letters</i> , 1997 , 24, 2753-2756	4.9	15
24	Real-Time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a Portable ATOFMS. <i>Analytical Chemistry</i> , 1997 , 69, 4083-4091	7.8	447
23	SpectraSort: A data analysis program for real-time aerosol analysis by aerosol time-of-flight mass spectrometry. <i>Chemometrics and Intelligent Laboratory Systems</i> , 1997 , 37, 197-203	3.8	9
22	Aerodynamic Particle Sizing versus Light Scattering Intensity Measurement as Methods for Real-Time Particle Sizing Coupled with Time-of-Flight Mass Spectrometry. <i>Analytical Chemistry</i> , 1996 , 68, 230-4	7.8	62
	Real-Time Measurement of Correlated Size and Composition Profiles of Individual Atmospheric		

20	Aerosol characterization using mass spectrometry. <i>TrAC - Trends in Analytical Chemistry</i> , 1994 , 13, 218-22	22 4.6	30
19	Real-Time Measurement Capabilities Using Aerosol Time-of-Flight Mass Spectrometry. <i>Analytical Chemistry</i> , 1994 , 66, 3540-3542	7.8	51
18	Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. <i>Analytical Chemistry</i> , 1994 , 66, 1403-1407	7.8	259
17	The Photodissociation of Pyridine at 193 nm. <i>Israel Journal of Chemistry</i> , 1994 , 34, 43-53	3.4	21
16	Photodissociation dynamics of 3-cyclopentenone using a tunable diode laser. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 6544-6548		4
15	Photodissociation dynamics of carbonyltrihydridoboron at 193 nm. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 4138-4142		4
14	Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes		1
13	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)		10
12	The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010		1
11	Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust		3
10	Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements		4
9	Impact of interannual variations in aerosol particle sources on orographic precipitation over California's Central Sierra Nevada		2
8	Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types		7
7	FATES: A Flexible Analysis Toolkit for the Exploration of Single Particle Mass Spectrometer Data		2
6	Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques		2
5	Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles		1
4	The Sea Spray Chemistry and Particle Evolution Study (SeaSCAPE): Overview and Experimental Methods		3
3	Supplementary material to "Marine gas-phase sulfur emissions during an induced phytoplankton bloom"		2

LIST OF PUBLICATIONS

2	Microplastics and nanoplastics in the marine-atmosphere environment. <i>Nature Reviews Earth & Environment</i> ,	30.2	8
1	Discrimination between individual dust and bioparticles using aerosol time-of-flight mass spectrometry. <i>Aerosol Science and Technology</i> .1-17	3.4	О