
Su00f8ren B Rasmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the Importance of V(IV) During NH ₃ â^'SCR Using <i>Operando</i> EPR Spectroscopy. ChemCatChem, 2020, 12, 4893-4903.	3.7	12
2	Identifying the presence of [V=O]2+ during SCR using in-situ Raman and UV Vis spectroscopy. Catalysis Today, 2019, 336, 45-49.	4.4	17
3	Transient operando study on the NH3/NH4+ interplay in V-SCR monolithic catalysts. Applied Catalysis B: Environmental, 2018, 224, 109-115.	20.2	48
4	Siteâ€Specific Reactivity of Copper Chabazite Zeolites with Nitric Oxide, Ammonia, and Oxygen. ChemCatChem, 2018, 10, 366-370.	3.7	45
5	A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VO /TiO2(0 0 1) catalysts. Journal of Catalysis, 2017, 346, 188-197.	6.2	101
6	Hierarchical Vanadia Model Catalysts for Ammonia Selective Catalytic Reduction. Topics in Catalysis, 2017, 60, 1631-1640.	2.8	9
7	Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy. Topics in Catalysis, 2017, 60, 13-29.	2.8	76
8	The reaction mechanism for the SCR process on monomer V ⁵⁺ sites and the effect of modified BrĀ,nsted acidity. Physical Chemistry Chemical Physics, 2016, 18, 17071-17080.	2.8	53
9	A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. ACS Catalysis, 2015, 5, 2832-2845.	11.2	400
10	Coexistence of Square Pyramidal Structures of Oxo Vanadium (+5) and (+4) Species Over Low-Coverage VO _{<i>X</i>} /TiO ₂ (101) and (001) Anatase Catalysts. Journal of Physical Chemistry C, 2015, 119, 23445-23452.	3.1	34
11	Coordination Environment of Copper Sites in Cu-CHA Zeolite Investigated by Electron Paramagnetic Resonance. Journal of Physical Chemistry C, 2014, 118, 23126-23138.	3.1	172
12	Formation of pyridine N-oxides using mesoporous titanium silicalite-1. Journal of Porous Materials, 2014, 21, 531-537.	2.6	7
13	Does Pelletizing Catalysts Influence the Efficiency Number of Activity Measurements? Spectrochemical Engineering Considerations for an Accurate Operando Study. ACS Catalysis, 2013, 3, 86-94.	11.2	28
14	Structural characteristics of an amorphous VPO monolayer on alumina for propane ammoxidation. Catalysis Today, 2012, 192, 96-103.	4.4	10
15	Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst. Physical Chemistry Chemical Physics, 2012, 14, 2171-2177.	2.8	20
16	Operando and in situ Raman studies of alumina-supported vanadium phosphatecatalysts in propane ammoxidation reaction: activity, selectivity and active phase formation. Physical Chemistry Chemical Physics, 2012, 14, 2128-2136.	2.8	15
17	Influence of H2S on ZrO2-based gasification gas clean-up catalysts: MeOH temperature-programmed reaction study. Applied Catalysis B: Environmental, 2012, 111-112, 605-613.	20.2	18
18	High performance vanadia–anatase nanoparticle catalysts for the Selective Catalytic Reduction of NO by ammonia. Journal of Catalysis, 2011, 284, 60-67.	6.2	74

#	Article	IF	CITATIONS
19	Redox behaviour of vanadium during hydrogen–oxygen exposure of the V2O5-WO3/TiO2 SCR catalyst at 250 °C. Applied Catalysis B: Environmental, 2011, 107, 340-346.	20.2	25
20	Pore design of pelletised VOX/ZrO2-SO4/Sepiolite composite catalysts. Studies in Surface Science and Catalysis, 2010, , 739-742.	1.5	1
21	Photocatalytic-based strategies for H2S elimination. Catalysis Today, 2010, 151, 64-70.	4.4	61
22	Hybrid TiO ₂ â^'SiMgO _{<i>X</i>} Composite for Combined Chemisorption and Photocatalytic Elimination of Gaseous H ₂ S. Industrial & Engineering Chemistry Research, 2010, 49, 6685-6690.	3.7	23
23	Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science, 2010, 47, 283-289.	5.2	30
24	Seed-assisted sol–gel synthesis and characterization of nanoparticular V2O5/anatase. Journal of Materials Science, 2009, 44, 323-327.	3.7	8
25	Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids. Applied Catalysis B: Environmental, 2008, 83, 110-122.	20.2	79
26	Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases. Applied Catalysis B: Environmental, 2007, 76, 9-14.	20.2	41
27	Preparation, Properties, and Reactivities of Unprecedented Oxo-Sulfido Nb(IV) Aqua lons and Crystal Structure of (Me2NH2)6[Nb5(μ3-S)2(μ3-O)2(μ2-O)2(NCS)14]·3.5H2O. Inorganic Chemistry, 2006, 45, 50	08 ⁴ 5017.	4
28	Cu–ZSM-5, Cu–ZSM-11, and Cu–ZSM-12 catalysts for direct NO decomposition. Catalysis Communications, 2006, 7, 705-708.	3.3	37
29	The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts. Applied Catalysis A: General, 2006, 306, 142-148.	4.3	19
30	Tungstated zirconia as promising carrier for DeNOX catalysts with improved resistance towards alkali poisoning. Applied Catalysis B: Environmental, 2006, 66, 161-167.	20.2	37
31	Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: Improved performance with hierarchical zeolites. Applied Catalysis B: Environmental, 2006, 67, 60-67.	20.2	129
32	Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas. Applied Catalysis B: Environmental, 2006, 69, 10-16.	20.2	13
33	Vanadium-Sulfate-Pyrosulfate Electrolytes for Electrochemical Removal of Sulfur Oxide. ECS Proceedings Volumes, 2004, 2004-24, 194-202.	0.1	0
34	Thermal, Conductivity, NMR, and Raman Spectroscopic Measurements and Phase Diagram of the Cs2S2O7â^'CsHSO4 System. Journal of Physical Chemistry B, 2003, 107, 13823-13830.	2.6	10
35	Crystal Structure and Spectroscopic Characterization of K8(VO)2O(SO4)6. Inorganic Chemistry, 2003, 42, 7123-7128.	4.0	15
36	EPR and UV/VIS spectroscopic investigations of VO2+ complexes and compounds formed in alkali pyrosulfates. Dalton Transactions RSC, 2002, , 87-91.	2.3	5