Miroslav Grajcar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical extrapolation method for complex conductivity of disordered metals. Physical Review B, 2021, 103, .	1.1	1
2	Study of optical conductivity of highly disordered MoC films by spectroscopic ellipsometry. AIP Conference Proceedings, 2021, , .	0.3	0
3	Transmission based characterisation of superconducting metamaterial. AIP Conference Proceedings, 2021, , .	0.3	0
4	Superconducting planar filter design. AIP Conference Proceedings, 2021, , .	0.3	0
5	Investigation of Complex Conductivity of Strongly Disordered Superconducting Films by Broadband Flip-Chip Transmission Line Technique. Acta Physica Polonica A, 2020, 137, 797-799.	0.2	1
6	Observation of quantum corrections to conductivity up to optical frequencies. Physical Review B, 2019, 100, .	1.1	5
7	Ferromagnetic resonance study of sputtered Pt/Co/Pt multilayers. Applied Surface Science, 2018, 461, 202-205.	3.1	6
8	On the origin of in-gap states in homogeneously disordered ultrathin films. MoC case. Applied Surface Science, 2018, 461, 143-148.	3.1	6
9	Detection of Weak Microwave Fields with an Underdamped Josephson Junction. Physical Review Applied, 2017, 7, .	1.5	44
10	High Q value Quartz Tuning Fork in Vacuum as a Potential Thermometer in Millikelvin Temperature Range. Journal of Low Temperature Physics, 2017, 187, 573-579.	0.6	9
11	Gaplessness and the Coulomb anomaly in the strongly disordered films of molybdenum carbide. AIP Conference Proceedings, 2016, , .	0.3	0
12	Experimental system design for the integration of trapped-ion and superconducting qubit systems. Quantum Information Processing, 2016, 15, 5385-5414.	1.0	12
13	Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics. Physical Review B, 2016, 94, .	1.1	29
14	Fermionic scenario for the destruction of superconductivity in ultrathin MoC films evidenced by STM measurements. Physical Review B, 2016, 93, .	1.1	34
15	A microwave cryogenic low-noise amplifier based on sige heterostructures. Technical Physics Letters, 2016, 42, 380-383.	0.2	14
16	Finite quasiparticle lifetime in disordered superconductors. Physical Review B, 2015, 92, .	1.1	21
17	Simulating long-distance entanglement in quantum spin chains by superconducting flux qubits. Physical Review A, 2015, 91,	1.0	12
18	A microwave splitter for superconducting quantum circuits. Technical Physics Letters, 2015, 41, 314-316	0.2	3

#	Article	IF	CITATIONS
19	Two-photon lasing by a superconducting qubit. Physical Review B, 2015, 91, .	1.1	12
20	How to test the ââ,¬Å"quantumnessââ,¬Â•of a quantum computer?. Frontiers in Physics, 2014, 2, .	1.0	18
21	Superconductivity Near Transition to Insulating State in MoC Ultrathin Films Studied by Subkelvin STM. Acta Physica Polonica A, 2014, 126, 368-369.	0.2	0
22	Amplification and attenuation of a probe signal by doubly dressed states. Physical Review B, 2014, 89, .	1.1	33
23	Parametric amplification by coupled flux qubits. Applied Physics Letters, 2014, 104, 162604.	1.5	19
24	Superconducting MoC thin films with enhanced sheet resistance. Applied Surface Science, 2014, 312, 216-219.	3.1	10
25	Superconducting properties of magnesium diboride thin film measured by using coplanar waveguide resonator. Applied Surface Science, 2014, 312, 231-234.	3.1	1
26	Dressed-State Amplification by a Single Superconducting Qubit. Physical Review Letters, 2013, 110, 053602.	2.9	49
27	Resonance features of coupled Josephson junctions: radiation and shunting. Journal of Physics: Conference Series, 2012, 393, 012020.	0.3	4
28	Cryogenic low noise 2.2–3GHz amplifier. Cryogenics, 2012, 52, 362-365.	0.9	3
29	Vortex Avalanches Induced by Single High-Frequency Pulses inÂMgB2 Films. Journal of Superconductivity and Novel Magnetism, 2011, 24, 395-400.	0.8	2
30	Cryogenic ultra-low-noise SiGe transistor amplifier. Review of Scientific Instruments, 2011, 82, 104705.	0.6	22
31	Multiphoton excitations and inverse population in a system of two flux qubits. Physical Review B, 2010, 81, .	1.1	17
32	Weak continuous monitoring of a flux qubit using coplanar waveguide resonator. Physical Review B, 2010, 81, .	1.1	38
33	Weak continuous measurements of multiqubits systems. Quantum Information Processing, 2009, 8, 133-153.	1.0	9
34	Superconducting MgB2 weak links and superconducting quantum interference devices prepared by AFM nanolithography. Physica C: Superconductivity and Its Applications, 2008, 468, 789-792.	0.6	4
35	Sisyphus cooling and amplification by a superconducting qubit. Nature Physics, 2008, 4, 612-616.	6.5	105
36	Consistency of Ground State and Spectroscopic Measurements on Flux Qubits. Physical Review Letters, 2008, 101, 017003.	2.9	80

#	Article	IF	CITATIONS
37	Resonant excitations of single and two-qubit systems coupled to a tank circuit. Physical Review B, 2008, 78, .	1.1	33
38	Lower limit on the achievable temperature in resonator-based sideband cooling. Physical Review B, 2008, 78, .	1.1	46
39	Controllable Coupling of Superconducting Flux Qubits. Physical Review Letters, 2007, 98, 057004.	2.9	170
40	MgB2 radio-frequency superconducting quantum interference device prepared by atomic force microscope lithography. Applied Physics Letters, 2007, 91, 122502.	1.5	3
41	Realization of a classical counterpart of a scalable design for adiabatic quantum computation. Applied Physics Letters, 2007, 90, 022501.	1.5	14
42	Adiabatic Quantum Computation With Flux Qubits, First Experimental Results. IEEE Transactions on Applied Superconductivity, 2007, 17, 113-119.	1.1	12
43	A Characterization of Global Entanglement. Quantum Information Processing, 2007, 6, 187-195.	1.0	72
44	Measurement of the ground-state flux diagram of three coupled qubits as a first step towards the demonstration of adiabatic quantum computation. Europhysics Letters, 2006, 76, 533-539.	0.7	16
45	Switchable resonant coupling of flux qubits. Physical Review B, 2006, 74, .	1.1	61
46	Four-Qubit Device with Mixed Couplings. Physical Review Letters, 2006, 96, 047006.	2.9	70
47	Fabrication and Measurement of Aluminum and Niobium Based Single-Electron Transistors and Charge Qubits. , 2005, , 266-276.		0
48	Temperature effect on the quasiparticle spectrum of an impurity-doped superconductor with two separate electron groups. Physical Review B, 2005, 72, .	1.1	4
49	Supercurrent-phase relationship of aNbâ^•InAs(2DES)â^•NbJosephson junction in overlapping geometry. Physical Review B, 2005, 71, .	1.1	12
50	Direct Josephson coupling between superconducting flux qubits. Physical Review B, 2005, 72, .	1.1	50
51	Quantum Dynamics of the Interferometer-Type Charge Qubit Under Microwave Irradiation. IEEE Transactions on Applied Superconductivity, 2005, 15, 876-879.	1.1	5
52	Possible implementation of adiabatic quantum algorithm with superconducting flux qubits. Physical Review B, 2005, 71, .	1.1	44
53	Reading out the state inductively and microwave spectroscopy of an interferometer-type charge qubit. Physical Review B, 2004, 70, .	1.1	39
54	Low-frequency measurement of the tunneling amplitude in a flux qubit. Physical Review B, 2004, 69, .	1.1	62

#	Article	IF	CITATIONS
55	Publisher's Note: Evidence for Entangled States of Two Coupled Flux Qubits [Phys. Rev. Lett.93, 037003 (2004)]. Physical Review Letters, 2004, 93, .	2.9	2
56	Selective amplification of a quantum state. Physical Review A, 2004, 70, .	1.0	15
57	Observation of macroscopic Landau-Zener transitions in a superconducting device. Europhysics Letters, 2004, 65, 844-849.	0.7	60
58	Evidence for Entangled States of Two Coupled Flux Qubits. Physical Review Letters, 2004, 93, 037003.	2.9	142
59	Radio-frequency method for investigation of quantum properties of superconducting structures. Low Temperature Physics, 2004, 30, 620-628.	0.2	39
60	Low noise, low power consumption high electron mobility transistors amplifier, for temperatures below 1 K. Review of Scientific Instruments, 2003, 74, 1145-1146.	0.6	48
61	Microfabricated oscillator for radio-frequency microscopy with integrated magnetic field concentrator. Review of Scientific Instruments, 2003, 74, 1282-1284.	0.6	5
62	Superconducting tunnel junction structures designed for qubit realizations. IEEE Transactions on Applied Superconductivity, 2003, 13, 1013-1016.	1.1	1
63	Continuous Monitoring of Rabi Oscillations in a Josephson Flux Qubit. Physical Review Letters, 2003, 91, 097906.	2.9	136
64	Paramagnetic effect inYBa2Cu3O7â^'xgrain-boundary junctions. Physical Review B, 2003, 68, .	1.1	8
65	Dynamic features of the phase-biased single-cooper-pair transistor. IEEE Transactions on Applied Superconductivity, 2003, 13, 934-937.	1.1	0
66	Characterization of superconducting structures designed for qubit realizations. Applied Physics Letters, 2002, 80, 4184-4186.	1.5	33
67	Method for direct observation of coherent quantum oscillations in a superconducting phase qubit. Physical Review B, 2002, 66, .	1.1	23
68	Observation of the second harmonic in superconducting current-phase relation of Nb/Au/(001)YBa 2 Cu 3 O x heterojunctions. Europhysics Letters, 2002, 57, 585-591.	0.7	38
69	Low-frequency characterization of quantum tunneling in flux qubits. Physical Review B, 2002, 66, .	1.1	58
70	Dephasing effects in superconducting heterojunctions: a crossover from coherent to sequential transmission. Physica C: Superconductivity and Its Applications, 2002, 367, 218-221.	0.6	2
71	Superconducting gap parameters of MgB2 obtained on MgB2/Ag and MgB2/In junctions. Physica C: Superconductivity and Its Applications, 2002, 368, 251-254.	0.6	22
72	Superconducting transport properties of YBCO grain boundary Josephson junctions. Physica C: Superconductivity and Its Applications, 2002, 368, 267-270.	0.6	3

#	Article	IF	CITATIONS
73	Superconducting current–phase relation of Nb/Au/() YBaCuO heterojunctions. Physica C: Superconductivity and Its Applications, 2002, 368, 271-275.	0.6	1
74	Supercurrent–phase relation of a Nb/InAs(2DEG)/Nb Josephson junction. Physica C: Superconductivity and Its Applications, 2002, 372-376, 27-30.	0.6	10
75	Dynamic features of a charge qubit closed by a superconducting inductive ring. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 303, 352-357.	0.9	18
76	Photoinduced insulator–metal transition in La0.81MnO3/Al2O3/Nb tunnel junctions. Applied Physics Letters, 2001, 78, 1712-1714.	1.5	14
77	Asymmetric double-barrier S–I1–N–I2–S Josephson heterojunctions: experiment and theory. Physica C: Superconductivity and Its Applications, 2001, 350, 187-192.	0.6	7
78	Charge transport across a mesoscopic superconductor–normal metal junction: coherence and decoherence effects. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1592-1595.	0.6	3
79	Current-phase relation in Nb-Al based SINIS-type Josephson junctions. IEEE Transactions on Applied Superconductivity, 2001, 11, 1142-1145.	1.1	0
80	Degenerate Ground State in a MesoscopicYBa2Cu3O7â^'xGrain Boundary Josephson Junction. Physical Review Letters, 2001, 86, 5369-5372.	2.9	163
81	Screw dislocation-induced enhancement of the c-axis critical current in anisotropic superconductors. Physica C: Superconductivity and Its Applications, 2000, 329, 5-11.	0.6	1
82	Supercurrent-phase relation of anNb/AlOx/Al/AlOx/Nb-based Josephson junction at the superconducting transition of the Al Interlayer. Physical Review B, 2000, 62, R14645-R14648.	1.1	5
83	Temperature-dependent transport characteristics of quasiballistic normal-metal–superconductor junctions. Physical Review B, 2000, 61, 3259-3262.	1.1	5
84	Anomalous periodicity of the current-phase relationship of grain-boundary Josephson junctions in high-Tcsuperconductors. Physical Review B, 1999, 60, 3096-3099.	1.1	72
85	Influence of illumination on the properties of Bi2Sr2CaCu2O8+y bicrystal grain boundary junction. Applied Physics Letters, 1999, 74, 3869-3871.	1.5	4
86	Phase-coherent charge transport in superconducting heterocontacts. Physical Review B, 1999, 59, 9617-9626.	1.1	30
87	Influence of bias voltage history on conductance properties of YBaCuO/normal metal junctions. Physica C: Superconductivity and Its Applications, 1998, 301, 234-242.	0.6	20
88	Influence of degraded surface layer of HTS on differential conductance of HTS/metal junctions. , 1998, 3480, 67.		1
89	Tunneling and Point Contact Spectroscopy of High-T _c Superconducting Thin Films. Acta Physica Polonica A, 1998, 93, 355-363.	0.2	1
90	Asymmetry and quasilinear background of differential conductance characteristics of high-Tc-superconductor/metal tunnel junctions. Physical Review B, 1997, 55, 11738-11744.	1.1	12

#	Article	IF	CITATIONS
91	The influence of bias voltage on YBa2Cu3O7â^'x/metal point contact interface. Journal of Alloys and Compounds, 1997, 251, 129-133.	2.8	Ο
92	The influence of external bias voltage on electrical properties of YBa2Cu3O7â^'x/metal point contact interface. Journal of Low Temperature Physics, 1997, 106, 277-283.	0.6	1
93	Peculiarities of â€~tunneling' characteristics observed in HTS/metal point contact junctions. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1481-1482.	0.6	2
94	Origin of linear background measured on YBaCuO-Au point contact junctions. European Physical Journal D, 1996, 46, 1333-1334.	0.4	1
95	Bias voltage asymmetry of inelastic differential conductivity of HTS/metal tunnel junctions. European Physical Journal D, 1996, 46, 1017-1018.	0.4	1
96	Modification of YBa2Cu3O7â^'Î-Au point contact interface properties by applied electric voltage. Physica B: Condensed Matter, 1996, 218, 209-212.	1.3	10
97	Superconducting parameters of YBCO and BSCCO from â€~tunneling' spectroscopy. Physica B: Condensed Matter, 1996, 218, 224-227.	1.3	7
98	Point contact investigation on Bi2Sr2CaCu2O8+y thin films. Journal of Superconductivity and Novel Magnetism, 1995, 8, 643-644.	0.5	0
99	Influence of inelastic effects on differential conductance of a high-Tcsuperconductor/metal junction. Physical Review B, 1995, 51, 16185-16189.	1.1	18
100	Finite-quasiparticle-lifetime effects in the differential conductance ofBi2Sr2CaCu2Oy/Au junctions. Physical Review B, 1994, 49, 10016-10019.	1.1	192
101	Study of point contacts with Au-tip on YBa2Cu3Ox and Bi2Sr2CaCu2Oy thin films. Physica B: Condensed Matter, 1994, 194-196, 2415-2416.	1.3	2
102	Time evolution of point contact resistances of high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1993, 218, 82-86.	0.6	15
103	Surface degradation of YBa2Cu3O7â^î^observed by means of contact resistance measurement. Solid State Communications, 1992, 81, 191-194.	0.9	16
104	The energy gap depression in YBa2Cu3O7â^'x/metal contacts. Solid State Communications, 1991, 78, 809-813.	0.9	20