Acaimo GonzÃ;lez-Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640158/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature, 1995, 375, 654-658.	27.8	475
2	The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Current Biology, 1997, 7, 468-478.	3.9	185
3	The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell, 1990, 61, 515-522.	28.9	179
4	Cytoneme-Mediated Delivery of Hedgehog Regulates the Expression of Bone Morphogenetic Proteins to Maintain Germline Stem Cells in Drosophila. PLoS Biology, 2012, 10, e1001298.	5.6	151
5	Jak/Stat signalling in niche support cells regulates <i>dpp</i> transcription to control germline stem cell maintenance in the <i>Drosophila</i> ovary. Development (Cambridge), 2008, 135, 533-540.	2.5	108
6	Integrin Signaling Regulates Spindle Orientation in Drosophila to Preserve the Follicular-Epithelium Monolayer. Current Biology, 2007, 17, 683-688.	3.9	83
7	The Drosophila <i>spn-D</i> Gene Encodes a RAD51C-Like Protein That Is Required Exclusively During Meiosis. Genetics, 2003, 165, 197-204.	2.9	76
8	Stem cells, niches and cadherins: a view fromDrosophila. Journal of Cell Science, 2003, 116, 949-954.	2.0	61
9	Concise Review: The Plasticity of Stem Cell Niches: A General Property Behind Tissue Homeostasis and Repair. Stem Cells, 2014, 32, 852-859.	3.2	53
10	Drosophila mus301/spindle-C Encodes a Helicase With an Essential Role in Double-Strand DNA Break Repair and Meiotic Progression. Genetics, 2006, 174, 1273-1285.	2.9	50
11	Cell surface proteins Nasrat and Polehole stabilize the Torso-like extracellular determinant in Drosophila oogenesis. Genes and Development, 2002, 16, 913-918.	5.9	49
12	Laminin Levels Regulate Tissue Migration and Anterior-Posterior Polarity during Egg Morphogenesis in Drosophila. Cell Reports, 2017, 20, 211-223.	6.4	42
13	ECM-Regulator timp Is Required for Stem Cell Niche Organization and Cyst Production in the Drosophila Ovary. PLoS Genetics, 2016, 12, e1005763.	3.5	33
14	Recent advances in Drosophila stem cell biology. International Journal of Developmental Biology, 2009, 53, 1329-1339.	0.6	31
15	EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. Nature Cell Biology, 2018, 20, 162-174.	10.3	31
16	Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis. Nature Communications, 2016, 7, 10746.	12.8	27
17	Developmental consequences of unrestricted expression of the abd-A gene of Drosophila. Mechanisms of Development, 1994, 46, 153-167.	1.7	23
18	The Ste20 kinase <i>misshapen</i> is essential for the invasive behaviour of ovarian epithelial cells in <i>Drosophila</i> . EMBO Reports, 2010, 11, 943-949.	4.5	23

#	Article	IF	CITATIONS
19	A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary. Mechanisms of Development, 2008, 125, 1048-1058.	1.7	22
20	Integrins contribute to the establishment and maintenance of cell polarity in the follicular epithelium of the Drosophila ovary. International Journal of Developmental Biology, 2008, 52, 925-932.	0.6	22
21	Stem cell niche organization in the Drosophila ovary requires the ECM component Perlecan. Current Biology, 2021, 31, 1744-1753.e5.	3.9	19
22	Genetics and mechanisms of ovarian cancer: Parallels between Drosophila and humans. Seminars in Cell and Developmental Biology, 2014, 28, 104-109.	5.0	18
23	Live imaging of the <i>Drosophila</i> ovarian niche shows spectrosome and centrosome dynamics during asymmetric germline stem cell division. Development (Cambridge), 2021, 148, .	2.5	11
24	A novel mutant phenotype implicatesdicephalic in cyst formation in theDrosophila ovary. Developmental Dynamics, 2006, 235, 908-917.	1.8	8
25	The careful control of Polo kinase by APC/C-Ube2C ensures the intercellular transport of germline centrosomes during <i>Drosophila</i> oogenesis. Open Biology, 2021, 11, 200371.	3.6	8
26	DNA repair and pattern formation come together. Nature Cell Biology, 1999, 1, E150-E152.	10.3	6
27	Egalitarian and the case of the missing link. Nature Cell Biology, 2004, 6, 381-383.	10.3	6
28	<i>mastermind</i> regulates niche ageing independently of the <i>Notch</i> pathway in the <i>Drosophila</i> ovary. Open Biology, 2019, 9, 190127.	3.6	4
29	Cell Signalling: Combining Pathways for Diversification and Reproducibility. Current Biology, 2016, 26, R1153-R1155.	3.9	1
30	José Luis Gómez-Skarmeta (1966-2020). Development (Cambridge), 2020, 147, .	2.5	1
31	Return to the Proliferative Pool. Science, 2008, 321, 1450-1451.	12.6	0