List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insolubility in milk protein concentrates: potential causes and strategies to minimize its occurrence. Critical Reviews in Food Science and Nutrition, 2022, 62, 6973-6989.	10.3	15
2	Protein Hydrolysates and Peptides. , 2022, , 154-166.		0
3	A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chemistry, 2022, 367, 130661.	8.2	33
4	Impact of thermal inactivation conditions on the residual proteolytic activity and the viscosity properties of whey protein concentrate enzymatic hydrolysates. Food Hydrocolloids, 2022, 124, 107333.	10.7	6
5	Impact of total calcium in milk protein concentrate on its interaction with the aqueous phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128068.	4.7	4
6	Blue Whiting (Micromesistius poutassou) Protein Hydrolysates Increase GLP-1 Secretion and Proglucagon Production in STC-1 Cells Whilst Maintaining Caco-2/HT29-MTX Co-Culture Integrity. Marine Drugs, 2022, 20, 112.	4.6	3
7	Rehydration and water sorption behaviour of bovine milk protein isolate and its associated enzymatic hydrolysates. International Dairy Journal, 2022, 128, 105323.	3.0	1
8	Contribution of Hydrolysis and Drying Conditions to Whey Protein Hydrolysate Characteristics and In Vitro Antioxidative Properties. Antioxidants, 2022, 11, 399.	5.1	9
9	Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates. Foods, 2022, 11, 516.	4.3	16
10	Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. Journal of Functional Foods, 2022, 92, 105052.	3.4	35
11	Impact of variation in calcium level on the technofunctional properties of milk protein concentrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128741.	4.7	8
12	Stability to thermal treatment of dipeptidyl peptidaseâ€ŧV inhibitory activity of a boarfish (<i>Capros) Tj ETQq0 of Food Science and Technology, 2021, 56, 158-165.</i>	0 0 rgBT /0 2.7	Overlock 10 7 10
13	The Production of Bioactive Peptides from Milk Proteins. Food Engineering Series, 2021, , 447-497.	0.7	4
14	Methodologies for bioactivity assay: biochemical study. , 2021, , 103-153.		2
15	Enzyme-Assisted Release of Antioxidant Peptides from Porphyra dioica Conchocelis. Antioxidants, 2021, 10, 249.	5.1	3
16	A Fish-Derived Protein Hydrolysate Induces Postprandial Aminoacidaemia and Skeletal Muscle Anabolism in an In Vitro Cell Model Using Ex Vivo Human Serum. Nutrients, 2021, 13, 647.	4.1	6
17	In Vitro and In Vivo Effects of Palmaria palmata Derived Peptides on Glucose Metabolism. International Journal of Peptide Research and Therapeutics, 2021, 27, 1667-1676.	1.9	3
18	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	2.5	75

#	Article	IF	CITATIONS
19	Generation of phenolic-rich extracts from brewers' spent grain and characterisation of their in vitro and in vivo activities. Innovative Food Science and Emerging Technologies, 2021, 68, 102617.	5.6	14
20	In Vitro Digestibility and Antioxidant Activity of Plant Protein Isolate and Milk Protein Concentrate Blends. Catalysts, 2021, 11, 787.	3.5	21
21	Macroalgal protein hydrolysates from Palmaria palmata influence the â€~incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. European Journal of Nutrition, 2021, 60, 4439-4452.	3.9	10
22	Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistiuspoutassou) Protein Hydrolysates. Marine Drugs, 2021, 19, 383.	4.6	13
23	Effect of enzymatically hydrolysed brewers' spent grain supplementation on the rheological, textural and sensory properties of muffins. Future Foods, 2021, 4, 100085.	5.4	12
24	Investigation of the flowability, thermal stability and emulsification properties of two milk protein concentrates having different levels of native whey proteins. Food Research International, 2021, 147, 110576.	6.2	10
25	Physicochemical properties and water interactions of milk protein concentrate with two different levels of undenatured whey protein. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127516.	4.7	5
26	Structure and in vitro bioactive properties of O/W emulsions generated with fava bean protein hydrolysates. Food Research International, 2021, 150, 110780.	6.2	9
27	Blue Whiting Protein Hydrolysates Exhibit Antioxidant and Immunomodulatory Activities in Stimulated Murine RAW264.7 Cells. Applied Sciences (Switzerland), 2021, 11, 9762.	2.5	3
28	In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests. Food and Function, 2021, 12, 12372-12380.	4.6	8
29	Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods, 2020, 64, 103636.	3.4	91
30	Interfacial/foaming properties and antioxidant activity of a silkworm (Bombyx mori) pupae protein concentrate. Food Hydrocolloids, 2020, 103, 105645.	10.7	19
31	Contribution of in vitro simulated gastrointestinal digestion to the antioxidant activity of Porphyra dioica conchocelis. Algal Research, 2020, 51, 102085.	4.6	8
32	Emulsification properties of bovine milk protein isolate and associated enzymatic hydrolysates. International Dairy Journal, 2020, 110, 104811.	3.0	7
33	Twice daily oral administration of Palmaria palmata protein hydrolysate reduces food intake in streptozotocin induced diabetic mice, improving glycaemic control and lipid profiles. Journal of Functional Foods, 2020, 73, 104101.	3.4	14
34	Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science, 2020, 96, 103130.	3.7	54
35	The insulinotropic and incretin response to feeding a milk based protein matrix in healthy young women. Journal of Functional Foods, 2020, 72, 104056.	3.4	4
36	Physicochemical and gelling properties of whey protein hydrolysates generated at 5 and 50°C using Alcalase® and Neutrase®, effect of total solids and incubation time. International Dairy Journal, 2020, 110, 104792.	3.0	8

#	Article	IF	CITATIONS
37	A Narrative Review of the Antiâ€Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Molecular Nutrition and Food Research, 2020, 64, e2000403.	3.3	15
38	Influence of Hydrolysis on the Bioactive Properties and Stability of Chickpea-Protein-Based O/W Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 10118-10127.	5.2	17
39	A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science, 2020, 7, .	2.5	22
40	Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Food Research International, 2020, 136, 109309.	6.2	35
41	Enzymatic Modification of Porphyra dioica-Derived Proteins to Improve their Antioxidant Potential. Molecules, 2020, 25, 2838.	3.8	14
42	Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 2020, 41, 1694-1717.	2.4	63
43	Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Research International, 2020, 131, 108989.	6.2	51
44	In Vitro Characterisation of the Antioxidative Properties of Whey Protein Hydrolysates Generated under pH- and Non pH-Controlled Conditions. Foods, 2020, 9, 582.	4.3	23
45	Identification of bioactive peptides from brewers' spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods, 2019, 60, 103455.	3.4	46
46	Temporal Change in Biomarkers of Bone Turnover Following Late Evening Ingestion of a Calcium-Fortified, Milk-Based Protein Matrix in Postmenopausal Women with Osteopenia. Nutrients, 2019, 11, 1413.	4.1	5
47	Assessment of the microstructural characteristics and the in vitro bioactive properties of sunflower oil-based emulsions stabilized by fava bean (vicia faba) protein. Food Hydrocolloids, 2019, 97, 105220.	10.7	16
48	Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science and Technology, 2019, 93, 106-124.	15.1	43
49	Exploring the Use of a Modified High-Temperature, Short-Time Continuous Heat Exchanger with Extended Holding Time (HTST-EHT) for Thermal Inactivation of Trypsin Following Selective Enzymatic Hydrolysis of the I²-Lactoglobulin Fraction in Whey Protein Isolate. Foods, 2019, 8, 367.	4.3	7
50	Bioactive Peptides from Fish Protein By-Products. Reference Series in Phytochemistry, 2019, , 355-388.	0.4	11
51	Phycobiliproteins, nitrogenous compounds and fatty acid contents in field-collected and cultured gametophytes of Porphyra dioica, a red sea vegetable. Journal of Applied Phycology, 2019, 31, 3849-3860.	2.8	5
52	Peptide identification from a <i>Porphyra dioica</i> protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food and Function, 2019, 10, 3421-3429.	4.6	64
53	Caseinophosphopeptides. , 2019, , 300-312.		0
54	A cell-based evaluation of a non-essential amino acid formulation as a non-bioactive control for activation and stimulation of muscle protein synthesis using ex vivo human serum. PLoS ONE, 2019, 14, e0220757.	2.5	8

#	Article	IF	CITATIONS
55	Immunomodulatory activity of 5ÂkDa permeate fractions of casein hydrolysates generated using a range of enzymes in Jurkat T cells and RAW264.7 macrophages. International Dairy Journal, 2019, 91, 9-17.	3.0	4
56	Boarfish (<i>Capros aper</i>) protein hydrolysate has potent insulinotropic and <scp>GLP</scp> â€1 secretory activity <i>inÂvitro</i> and acute glucose lowering effects in mice. International Journal of Food Science and Technology, 2019, 54, 271-281.	2.7	19
57	Variable Glycemic Responses to Intact and Hydrolyzed Milk Proteins in Overweight and Obese Adults Reveal the Need for Precision Nutrition. Journal of Nutrition, 2019, 149, 88-97.	2.9	12
58	Characterisation of the bioactive properties and microstructure of chickpea protein-based oil in water emulsions. Food Research International, 2019, 121, 577-585.	6.2	36
59	Integration of high and low field 1H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening. International Dairy Journal, 2019, 91, 155-164.	3.0	15
60	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chemistry, 2019, 279, 70-79.	8.2	72
61	Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Food Research International, 2019, 121, 524-532.	6.2	59
62	Role of carbohydrate conjugation on the emulsification and antioxidant properties of intact and hydrolysed whey protein concentrate. Food Hydrocolloids, 2019, 88, 170-179.	10.7	25
63	Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry, 2019, 43, e12451.	2.9	131
64	Functional properties of bovine milk protein isolate and associated enzymatic hydrolysates. International Dairy Journal, 2018, 81, 113-121.	3.0	22
65	Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans. Journal of Agricultural and Food Chemistry, 2018, 66, 4352-4363.	5.2	28
66	Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International, 2018, 106, 598-606.	6.2	82
67	Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Analytical and Bioanalytical Chemistry, 2018, 410, 3407-3423.	3.7	49
68	Use of 31P NMR and FTIR to investigate key milk mineral equilibria and their interactions with micellar casein during heat treatment. International Dairy Journal, 2018, 81, 12-18.	3.0	21
69	Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry, 2018, 244, 340-348.	8.2	127
70	Impact of enzyme inactivation conditions during the generation of whey protein hydrolysates on their physicochemical and bioactive properties. International Journal of Food Science and Technology, 2018, 53, 219-227.	2.7	14
71	Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket (<i>Gryllodes sigillatus</i>) proteins. Food and Function, 2018, 9, 407-416.	4.6	32
72	Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. Journal of Functional Foods, 2018, 40, 137-145.	3.4	51

#	Article	IF	CITATIONS
73	Angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory activities of transglutaminase treated sodium caseinate hydrolysates. International Dairy Journal, 2018, 78, 85-91.	3.0	14
74	Whey protein hydrolysate induced modulation of endothelial cell gene expression. Journal of Functional Foods, 2018, 40, 102-109.	3.4	10
75	Technical note: Fourier transform infrared spectral analysis in tandem with 31P nuclear magnetic resonance spectroscopy elaborates detailed insights into phosphate partitioning during skimmed milk microfiltration and diafiltration. Journal of Dairy Science, 2018, 101, 10750-10758.	3.4	7
76	Bioactive Peptides From Fish Protein By-Products. Reference Series in Phytochemistry, 2018, , 1-35.	0.4	8
77	In Silico Approaches Applied to the Study of Peptide Analogs of Ile-Pro-Ile in Relation to Their Dipeptidyl Peptidase IV Inhibitory Properties. Frontiers in Endocrinology, 2018, 9, 329.	3.5	44
78	Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase <scp>IV</scp> inhibitory properties. Journal of the Science of Food and Agriculture, 2017, 97, 1093-1101.	3.5	24
79	Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica. Journal of Applied Phycology, 2017, 29, 2439-2450.	2.8	33
80	Aqueous and enzyme-extracted phenolic compounds from brewers' spent grain (BSG): Assessment of their antioxidant potential. Journal of Food Biochemistry, 2017, 41, e12370.	2.9	12
81	Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Research International, 2017, 94, 79-89.	6.2	68
82	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. Journal of Functional Foods, 2017, 34, 49-58.	3.4	87
83	Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity. Journal of Functional Foods, 2017, 34, 77-88.	3.4	60
84	Identification of angiotensin converting enzyme inhibitory and antioxidant peptides in a whey protein concentrate hydrolysate produced at semiâ€pilot scale. International Journal of Food Science and Technology, 2017, 52, 1751-1759.	2.7	35
85	Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food and Function, 2017, 8, 2249-2257.	4.6	26
86	Peptide composition and dipeptidyl peptidase IV inhibitory properties of β-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Research International, 2017, 99, 84-90.	6.2	15
87	Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 2017, 231, 202-211.	8.2	37
88	Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis. Journal of the Science of Food and Agriculture, 2017, 97, 4652-4655.	3.5	14
89	Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology, 2017, 69, 289-305.	15.1	90
90	Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin. Journal of Food Biochemistry, 2017, 41, e12350.	2.9	48

#	Article	IF	CITATIONS
91	Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science and Emerging Technologies, 2017, 43, 239-252.	5.6	148
92	Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Research International, 2017, 100, 416-422.	6.2	104
93	Effects of depleting ionic strength on 31P nuclear magnetic resonance spectra of micellar casein during membrane separation and diafiltration of skim milk. Journal of Dairy Science, 2017, 100, 6949-6961.	3.4	19
94	Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Research International, 2017, 100, 112-120.	6.2	102
95	Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science and Technology, 2017, 52, 146-153.	2.7	43
96	Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chemistry, 2017, 218, 396-405.	8.2	130
97	Effect of enzyme-extracted brewers' spent grain protein hydrolysates on inflammatory response in cells associated with atherosclerosis. Proceedings of the Nutrition Society, 2016, 75, .	1.0	0
98	Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin. Food and Function, 2016, 7, 3437-3443.	4.6	26
99	Evaluation of the antioxidant capacity of a milk protein matrix <i>in vitro</i> and <i>in vivo</i> in women aged 50–70 years. International Journal of Food Sciences and Nutrition, 2016, 67, 325-334.	2.8	30
100	Angiotensin Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory, and Antioxidant Activities of a Blue Mussel (<i>Mytilus edulis</i>) Meat Protein Extract and Its Hydrolysates. Journal of Aquatic Food Product Technology, 2016, 25, 1221-1233.	1.4	22
101	Learnings from quantitative structure–activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review. RSC Advances, 2016, 6, 75400-75413.	3.6	73
102	Impact of enzyme preparation and degree of hydrolysis on peptide profile and nitrogen solubility of sodium caseinate hydrolysates. International Journal of Food Science and Technology, 2016, 51, 2123-2131.	2.7	12
103	InÂvitro antioxidant and immunomodulatory activity of transglutaminase-treated sodium caseinate hydrolysates. International Dairy Journal, 2016, 63, 107-114.	3.0	19
104	A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasomeâ€mediated inflammation and improving insulin signaling. Molecular Nutrition and Food Research, 2016, 60, 2421-2432.	3.3	26
105	Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innovative Food Science and Emerging Technologies, 2016, 37, 221-228.	5.6	51
106	Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 2016, 79, 1-7.	2.4	104
107	Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Current Opinion in Food Science, 2016, 8, 19-24.	8.0	59
108	Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science and Technology, 2016, 50, 26-43.	15.1	82

#	Article	IF	CITATIONS
109	Antioxidant activity of co-products from milk fat processing and their enzymatic hydrolysates obtained with different proteolytic preparations. International Dairy Journal, 2016, 60, 70-77.	3.0	7
110	Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chemistry, 2016, 199, 246-251.	8.2	79
111	Milk Protein Hydrolysates and Bioactive Peptides. , 2016, , 417-482.		38
112	The effect of consuming Palmaria palmata-enriched bread on inflammatory markers, antioxidant status, lipid profile and thyroid function in a randomised placebo-controlled intervention trial in healthy adults. European Journal of Nutrition, 2016, 55, 1951-1962.	3.9	31
113	The immunomodulatory potential of in vitro digested low-fat milk supplemented with brewers' spent grain protein hydrolysate; selection of a non-cytotoxic level of digestate. Proceedings of the Nutrition Society, 2015, 74, .	1.0	Ο
114	Potential immunomodulatory effects of casein-derived bioactive peptides in human T cells. Proceedings of the Nutrition Society, 2015, 74, .	1.0	3
115	Concentrated whey protein ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation. International Journal of Dairy Technology, 2015, 68, 349-356.	2.8	38
116	Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins. Marine Drugs, 2015, 13, 509-528.	4.6	131
117	Milk proteins as a source of tryptophan-containing bioactive peptides. Food and Function, 2015, 6, 2115-2127.	4.6	60
118	Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chemistry, 2015, 176, 441-447.	8.2	93
119	A study of the ability of bioactive extracts from brewers' spent grain to enhance the antioxidant and immunomodulatory potential of food formulations following <i>in vitro</i> digestion. International Journal of Food Sciences and Nutrition, 2015, 66, 230-235.	2.8	13
120	Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with inÂvitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 2015, 65, 112-118.	3.7	114
121	The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods, 2015, 17, 640-656.	3.4	185
122	Molecular Characterization of Whey Protein Hydrolysate Fractions with Ferrous Chelating and Enhanced Iron Solubility Capabilities. Journal of Agricultural and Food Chemistry, 2015, 63, 2708-2714.	5.2	66
123	Quantitative analysis of bovine \hat{l}^2 -casein hydrolysates obtained using glutamyl endopeptidase. LWT - Food Science and Technology, 2015, 63, 1334-1338.	5.2	1
124	Peptide identification and angiotensin converting enzyme (ACE) inhibitory activity in prolyl endoproteinase digests of bovine αs-casein. Food Chemistry, 2015, 188, 210-217.	8.2	23
125	Identification of short peptide sequences in complex milk protein hydrolysates. Food Chemistry, 2015, 184, 140-146.	8.2	58
126	Bioactive properties of milk proteins in humans: A review. Peptides, 2015, 73, 20-34.	2.4	95

#	Article	IF	CITATIONS
127	Immunomodulatory potential of a brewers' spent grain protein hydrolysate incorporated into low-fat milk following <i>in vitro</i> gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 2015, 66, 672-676.	2.8	28
128	In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis. Food and Function, 2015, 6, 972-980.	4.6	44
129	Extraction and Enrichment of Protein from Red and Green Macroalgae. Methods in Molecular Biology, 2015, 1308, 103-108.	0.9	14
130	Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Research International, 2015, 77, 534-539.	6.2	47
131	Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chemistry, 2015, 173, 847-854.	8.2	64
132	Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate. Food Chemistry, 2015, 176, 64-71.	8.2	79
133	Utilisation of the isobole methodology to study dietary peptide–drug and peptide–peptide interactive effects on dipeptidyl peptidase IV (DPP-IV) inhibition. Food and Function, 2015, 6, 312-319.	4.6	26
134	Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 2015, 27, 519-530.	2.8	56
135	<i>In vitro</i> assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture, 2015, 95, 1514-1520.	3.5	49
136	Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry, 2015, 173, 536-542.	8.2	81
137	Relative quantitation analysis of the substrate specificity of glutamyl endopeptidase with bovine α-caseins. Food Chemistry, 2015, 167, 463-467.	8.2	2
138	Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chemistry, 2015, 172, 400-406.	8.2	149
139	Antioxidant activity and phenolic content of pressurised liquid and solid–liquid extracts from four Irish origin macroalgae. International Journal of Food Science and Technology, 2014, 49, 1765-1772.	2.7	57
140	Antioxidant activity of bovine casein hydrolysates produced by Ficus carica Lderived proteinase. Food Chemistry, 2014, 156, 305-311.	8.2	51
141	Antioxidant effects of enzymatic hydrolysates of whey protein concentrate on cultured human endothelial cells. International Dairy Journal, 2014, 36, 128-135.	3.0	56
142	In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides, 2014, 57, 43-51.	2.4	113
143	Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proceedings of the Nutrition Society, 2014, 73, 34-46.	1.0	132
144	Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine β-casein and determination of ACE inhibitory activity. Food Chemistry, 2014, 156, 29-36.	8.2	46

#	Article	IF	CITATIONS
145	Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chemistry, 2014, 145, 845-852.	8.2	125
146	In vitro α-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers' spent grain protein hydrolysates. Food Research International, 2014, 56, 100-107.	6.2	90
147	Solubilisation of calcium and magnesium from the marine red algae <i>Lithothamnion calcareum</i> . International Journal of Food Science and Technology, 2014, 49, 1600-1606.	2.7	2
148	Application of ultrafiltration in the study of phenolic isolates and melanoidins from pale and black brewers' spent grain. International Journal of Food Science and Technology, 2014, 49, 2252-2259.	2.7	17
149	Phenolic-enriched fractions from brewers' spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. Journal of the Science of Food and Agriculture, 2014, 94, 1373-1379.	3.5	16
150	The effect of time and origin of harvest on the in vitro biological activity of Palmaria palmata protein hydrolysates. Food Research International, 2014, 62, 746-752.	6.2	34
151	Technofunctional properties of a brewers' spent grain protein-enriched isolate and its associated enzymatic hydrolysates. LWT - Food Science and Technology, 2014, 59, 1061-1067.	5.2	46
152	Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science and Technology, 2014, 37, 92-105.	15.1	160
153	Selective enrichment of bioactive properties during ultrafiltration of a tryptic digest of β-lactoglobulin. Journal of Functional Foods, 2014, 9, 38-47.	3.4	75
154	Milk protein-derived peptides induce 5-HT2C-mediated satiety inÂvivo. International Dairy Journal, 2014, 38, 55-64.	3.0	15
155	An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 2014, 165, 489-498.	8.2	140
156	Membrane fractionation of a βâ€lactoglobulin tryptic digest: effect of the membrane characteristics. Journal of Chemical Technology and Biotechnology, 2014, 89, 508-515.	3.2	17
157	In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. Journal of Applied Phycology, 2013, 25, 1793-1803.	2.8	112
158	Insulinotropic properties of whey protein hydrolysates and impact of peptide fractionation on insulinotropic response. International Dairy Journal, 2013, 32, 163-168.	3.0	34
159	In vitro antioxidant and anti-inflammatory effects of brewers' spent grain protein rich isolate and its associated hydrolysates. Food Research International, 2013, 50, 205-212.	6.2	61
160	Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 2013, 39, 157-163.	2.4	187
161	Total Solids Content and Degree of Hydrolysis Influence Proteolytic Inactivation Kinetics Following Whey Protein Hydrolysate Manufacture. Journal of Agricultural and Food Chemistry, 2013, 61, 10135-10144.	5.2	19
162	The hydroxycinnamic acid content of barley and brewers' spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 2013, 141, 2567-2574.	8.2	91

#	Article	IF	CITATIONS
163	Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food and Function, 2013, 4, 1843.	4.6	70
164	Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 2013, 141, 644-653.	8.2	124
165	Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction. International Dairy Journal, 2013, 32, 33-39.	3.0	90
166	Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture. Food and Function, 2013, 4, 1709.	4.6	15
167	Milk protein hydrolysates activate 5-HT2C serotonin receptors: influence of the starting substrate and isolation of bioactive fractions. Food and Function, 2013, 4, 728.	4.6	15
168	Characterisation of proteinâ€rich isolates and antioxidative phenolic extracts from pale and black brewers' spent grain. International Journal of Food Science and Technology, 2013, 48, 1670-1681.	2.7	109
169	Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. Journal of Functional Foods, 2013, 5, 1909-1917.	3.4	93
170	Substrate specificity of glutamyl endopeptidase (GE): Hydrolysis studies with a bovine α-casein preparation. Food Chemistry, 2013, 136, 501-512.	8.2	20
171	Characterisation of the physicochemical, residual antigenicity and cell activity properties of transglutaminase cross-linked sodium caseinate hydrolysates. International Dairy Journal, 2013, 33, 49-54.	3.0	9
172	Whey protein isolate polydispersity affects enzymatic hydrolysis outcomes. Food Chemistry, 2013, 141, 2334-2342.	8.2	21
173	Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids, 2013, 44, 797-820.	2.7	299
174	Membrane fractionation of a β-lactoglobulin tryptic digest: Effect of the pH. Journal of Food Engineering, 2013, 114, 83-89.	5.2	23
175	Extraction of protein from the macroalga Palmaria palmata. LWT - Food Science and Technology, 2013, 51, 375-382.	5.2	144
176	Investigation of the Substrate Specificity of Glutamyl Endopeptidase Using Purified Bovine β-Casein and Synthetic Peptides. Journal of Agricultural and Food Chemistry, 2013, 61, 3193-3204.	5.2	11
177	A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic $\hat{1}^2$ -Cell Line and Enhances Glycemic Function in ob/ob Mice1â \in "3. Journal of Nutrition, 2013, 143, 1109-1114.	2.9	72
178	The Use of Herbs, Spices, and Whey Proteins as Natural Flavor Enhancers and Their Effect on the Sensory Acceptability of Reduced-Salt Chilled Ready-Meals. Journal of Culinary Science and Technology, 2013, 11, 222-240.	1.4	17
179	Brewers' spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proceedings of the Nutrition Society, 2013, 72, 117-125.	1.0	111
180	Cellular in vitro bioactivity of protein hydrolysates from brewers' spent grain. Proceedings of the Nutrition Society, 2013, 72, .	1.0	0

#	Article	IF	CITATIONS
181	Cardioprotective Peptides from Marine Sources. Current Protein and Peptide Science, 2013, 14, 162-172.	1.4	7
182	Biofunctional Properties of Caseinophosphopeptides in the Oral Cavity. Caries Research, 2012, 46, 234-267.	2.0	76
183	An investigation into the possible beneficial effects of milk hydrolysates on insulin secretion and metabolic function. Proceedings of the Nutrition Society, 2012, 71, .	1.0	0
184	Application of metabolomics to mining effects of milk peptides on cellular metabolism. Proceedings of the Nutrition Society, 2012, 71, .	1.0	1
185	Enzymatic Hydrolysis of Heat-Induced Aggregates of Whey Protein Isolate. Journal of Agricultural and Food Chemistry, 2012, 60, 4895-4904.	5.2	82
186	Physicochemical properties and residual antigenicity of transglutaminase cross-linked sodium caseinate hydrolysates. International Dairy Journal, 2012, 23, 18-23.	3.0	10
187	Caseinophosphopeptide enrichment and identification. International Journal of Food Science and Technology, 2012, 47, 2235-2242.	2.7	5
188	Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 2012, 37, 263-272.	2.4	104
189	Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, 2012, 4, 6-24.	3.4	475
190	Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chemistry, 2012, 133, 1349-1354.	8.2	73
191	Phenolic extracts of brewers' spent grain (BSG) as functional ingredients – Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chemistry, 2012, 134, 641-646.	8.2	63
192	Extent of hydrolysis effects on casein hydrolysate bioactivity: Evaluation using the human Jurkat T cell line. International Dairy Journal, 2011, 21, 777-782.	3.0	27
193	Potential of phenolic extracts from Brewer's spent grain to protect against oxidant-induced DNA damage. Proceedings of the Nutrition Society, 2011, 70, .	1.0	0
194	BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE1. Journal of Phycology, 2011, 47, 218-232.	2.3	288
195	Evaluation of cellular and antioxidant effects of casein hydrolysates. Proceedings of the Nutrition Society, 2010, 69, .	1.0	0
196	Direct nanoHPLC-ESI-QTOF MS/MS analysis of tryptic caseinophosphopeptides. Food Chemistry, 2010, 123, 753-759.	8.2	22
197	Growth inhibitory effects of casein hydrolysates on human cancer cell lines. Journal of Dairy Research, 2010, 77, 176-182.	1.4	14
198	Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chemistry, 2009, 114, 440-446.	8.2	105

Irma Chacón

#	Article	IF	CITATIONS
199	Distribution of microbial flora, intracellular enzymes and compositional indices throughout a 12kg Cheddar cheese block during ripening. International Dairy Journal, 2009, 19, 321-329.	3.0	20
200	Potential bioactive effects of casein hydrolysates on human cultured cells. International Dairy Journal, 2009, 19, 279-285.	3.0	67
201	Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal, 2009, 19, 643-654.	3.0	280
202	Thermal stability of soy protein isolate and hydrolysate ingredients. Food Chemistry, 2008, 108, 503-510.	8.2	31
203	Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 2008, 41, 43-52.	6.2	23
204	Thermal behavior of emulsions manufactured with soy protein ingredients. Food Research International, 2008, 41, 813-818.	6.2	7
205	Potential bioactive properties of casein hydrolysates. Proceedings of the Nutrition Society, 2008, 67, .	1.0	0
206	Angiotensin Converting Enzyme Inhibitory Peptides Derived from Food Proteins: Biochemistry, Bioactivity and Production. Current Pharmaceutical Design, 2007, 13, 773-791.	1.9	397
207	Autolysis of selected Lactobacillus helveticus adjunct strains during Cheddar cheese ripening. International Dairy Journal, 2006, 16, 797-804.	3.0	35
208	Calcium absorption is not increased by caseinophosphopeptides. American Journal of Clinical Nutrition, 2006, 84, 162-166.	4.7	53
209	Bioactive peptides and lactic fermentations. International Journal of Dairy Technology, 2006, 59, 118-125.	2.8	284
210	Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties. Journal of Applied Microbiology, 2006, 100, 893-901.	3.1	23
211	Enzymatic debittering of food protein hydrolysates. Biotechnology Advances, 2006, 24, 234-237.	11.7	173
212	Comparative analysis of the autolytic potential of Lactobacillus helveticus strains during Cheddar cheese ripening. International Journal of Dairy Technology, 2005, 58, 207-213.	2.8	5
213	Cheddar cheese cooking temperature induces differential lactococcal cell permeabilization and autolytic responses as detected by flow cytometry: implications for intracellular enzyme accessibility. Journal of Applied Microbiology, 2005, 99, 1007-1018.	3.1	34
214	Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels. Journal of Dairy Research, 2005, 72, 138-143.	1.4	51
215	Aggregation Properties of Whey Protein Hydrolysates Generated withBacillus licheniformisProteinase Activities. Journal of Agricultural and Food Chemistry, 2005, 53, 1258-1265.	5.2	61
216	Modification of the furanacryloyl-l-phenylalanylglycylglycine assay for determination of angiotensin-l-converting enzyme inhibitory activity. Journal of Proteomics, 2004, 59, 127-137.	2.4	81

#	Article	IF	CITATIONS
217	In Vitro Generation and Stability of the Lactokinin β-Lactoglobulin Fragment (142–148). Journal of Dairy Science, 2004, 87, 3845-3857.	3.4	95
218	Hypotensive Peptides from Milk Proteins. Journal of Nutrition, 2004, 134, 980S-988S.	2.9	584
219	Characterisation and quantification of the reaction(s) catalysed by transglutaminase using the o-phthaldialdehyde reagent. Molecular Nutrition and Food Research, 2003, 47, 207-212.	0.0	9
220	Milk Protein Hydrolysates and Bioactive Peptides. , 2003, , 675-698.		49
221	Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. British Journal of Nutrition, 2003, 89, 351-358.	2.3	84
222	Functional properties of Bacillus proteinase hydrolysates of sodium caseinate incubated with transglutaminase pre- and post-hydrolysis. International Dairy Journal, 2003, 13, 135-143.	3.0	37
223	Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 2003, 13, 447-453.	3.0	300
224	Effect of cross-linking with transglutaminase on the heat stability and some functional characteristics of sodium caseinate. Food Research International, 2003, 36, 267-274.	6.2	52
225	Modification of the nitrogen solubility properties of soy protein isolate following proteolysis and transglutaminase cross-linking. Food Research International, 2003, 36, 677-683.	6.2	39
226	Biofunctional Peptides from Milk Proteins: Mineral Binding and Cytomodulatory Effects. Current Pharmaceutical Design, 2003, 9, 1289-1295.	1.9	347
227	Physicochemical and Nitrogen Solubility Properties of Bacillus Proteinase Hydrolysates of Sodium Caseinate Incubated with Transglutaminase Pre- and Post-hydrolysis. Journal of Agricultural and Food Chemistry, 2002, 50, 5429-5436.	5.2	24
228	Functionality of Bacillus proteinase hydrolysates of sodium caseinate. International Dairy Journal, 2002, 12, 737-748.	3.0	34
229	Nutraceutical and functional food ingredients for food and pharmaceutical applications. British Journal of Nutrition, 2001, 85, 635-635.	2.3	16
230	Effect of glutamine peptide on baking characteristics of bread using experimental design. European Food Research and Technology, 2001, 212, 192-197.	3.3	13
231	The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. British Journal of Nutrition, 2000, 83, 673-680.	2.3	81
232	Milk protein-derived peptide inhibitors of angiotensin-l-converting enzyme. British Journal of Nutrition, 2000, 84, 33-37.	2.3	388
233	Opioid peptides encrypted in intact milk protein sequences. British Journal of Nutrition, 2000, 84, 27-31.	2.3	161
234	Lactokinins: Whey protein-derived ACE inhibitory peptides. Molecular Nutrition and Food Research, 1999, 43, 165-167.	0.0	88

#	Article	IF	CITATIONS
235	Hydrolysis of αs1- and β-casein-derived peptides with a broad specificity aminopeptidase and proline specific aminopeptidases fromLactococcus lactissubsp.cremorisAM2. FEBS Letters, 1999, 445, 321-324.	2.8	15
236	Purification and characterization of a lysine-p-nitroanilide hydrolase, a broad specificity aminopeptidase, from the cytoplasm of Lactococcus lactis subsp. cremoris AM2. Journal of Dairy Research, 1999, 66, 257-270.	1.4	14
237	Functional Properties and Bitterness of Sodium Caseinate Hydrolysates Prepared with a Bacillus Proteinase. Journal of Food Science, 1998, 63, 418-422.	3.1	63
238	Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. International Dairy Journal, 1998, 8, 39-45.	3.0	70
239	Potential Uses of Caseinophosphopeptides. International Dairy Journal, 1998, 8, 451-457.	3.0	172
240	Influence of κ-Casein Genetic Variant on Rennet Gel Microstructure, Cheddar Cheesemaking Properties and Casein Micelle Size. International Dairy Journal, 1998, 8, 707-714.	3.0	67
241	Relationship between Some Characteristics of WPC Hydrolysates and the Enzyme Complement in Commercially Available Proteinase Preparations. International Dairy Journal, 1998, 8, 819-827.	3.0	64
242	Cheesemaking, compositional and functional characteristics of low-moisture part-skim Mozzarella cheese from bovine milks containing l̂º-casein AA, AB or BB genetic variants. Journal of Dairy Research, 1998, 65, 307-315.	1.4	30
243	Angiotensin-I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. International Dairy Journal, 1997, 7, 299-303.	3.0	201
244	Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine β-lactoglobulin. FEBS Letters, 1997, 402, 99-101.	2.8	231
245	Zymogen Activation in Pancreatic Endoproteolytic Preparations and Influence on Some Whey Protein Hydrolysate Characteristics. Journal of Food Science, 1995, 60, 227-233.	3.1	32
246	Proteolytic and Peptidolytic Activities in Commercial Pancreatic Protease Preparations and Their Relationship to Some Whey Protein Hydrolyzate Characteristics. Journal of Agricultural and Food Chemistry, 1994, 42, 2973-2981.	5.2	63
247	Transformation of Gluconobacter oxydans subsp. suboxydans by electroporation. Canadian Journal of Microbiology, 1994, 40, 491-494.	1.7	8
248	Intracellular pH and the role of D-lactate dehydrogenase in the production of metabolic end products by <i>Leuconostoc lactis</i> . Journal of Dairy Research, 1992, 59, 359-367.	1.4	16
249	Binding of ions and hydrophobie probes to $\hat{l}\pm$ -lactalbumin and k-casein as determined by analytical affinity chromatography. Archives of Biochemistry and Biophysics, 1989, 268, 239-248.	3.0	24
250	Purification and characterization of the d-lactate dehydrogenase from Leuconostoc lactis. International Journal of Biochemistry & Cell Biology, 1986, 18, 31-38.	0.5	3
251	Acetolactate synthase of <i>Leuconostoc lactis</i> and its regulation of acetoin production. Journal of Dairy Research, 1984, 51, 597-604.	1.4	45

252 Whey Proteins and Peptides in Human Health. , 0, , 285-343.

#	Article	IF	CITATIONS
253	Protein extraction and bioactive hydrolysate generation from two microalgae, Porphyridium purpureum and Phaeodactylum tricornutum. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 1, .	2.4	19
254	In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. European Food Research and Technology, 0, , 1.	3.3	4