
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640126/publications.pdf Version: 2024-02-01

ΙσΜΑ CHACÃ3Ν

#	Article	IF	CITATIONS
1	Hypotensive Peptides from Milk Proteins. Journal of Nutrition, 2004, 134, 980S-988S.	2.9	584
2	Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, 2012, 4, 6-24.	3.4	475
3	Angiotensin Converting Enzyme Inhibitory Peptides Derived from Food Proteins: Biochemistry, Bioactivity and Production. Current Pharmaceutical Design, 2007, 13, 773-791.	1.9	397
4	Milk protein-derived peptide inhibitors of angiotensin-l-converting enzyme. British Journal of Nutrition, 2000, 84, 33-37.	2.3	388
5	Biofunctional Peptides from Milk Proteins: Mineral Binding and Cytomodulatory Effects. Current Pharmaceutical Design, 2003, 9, 1289-1295.	1.9	347
6	Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 2003, 13, 447-453.	3.0	300
7	Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids, 2013, 44, 797-820.	2.7	299
8	BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE1. Journal of Phycology, 2011, 47, 218-232.	2.3	288
9	Bioactive peptides and lactic fermentations. International Journal of Dairy Technology, 2006, 59, 118-125.	2.8	284
10	Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal, 2009, 19, 643-654.	3.0	280
11	Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine β-lactoglobulin. FEBS Letters, 1997, 402, 99-101.	2.8	231
12	Angiotensin-l-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. International Dairy Journal, 1997, 7, 299-303.	3.0	201
13	Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 2013, 39, 157-163.	2.4	187
14	The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods, 2015, 17, 640-656.	3.4	185
15	Enzymatic debittering of food protein hydrolysates. Biotechnology Advances, 2006, 24, 234-237.	11.7	173
16	Potential Uses of Caseinophosphopeptides. International Dairy Journal, 1998, 8, 451-457.	3.0	172
17	Opioid peptides encrypted in intact milk protein sequences. British Journal of Nutrition, 2000, 84, 27-31.	2.3	161
18	Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science and Technology, 2014, 37, 92-105.	15.1	160

Irma Chacón

#	Article	IF	CITATIONS
19	Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chemistry, 2015, 172, 400-406.	8.2	149
20	Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science and Emerging Technologies, 2017, 43, 239-252.	5.6	148
21	Extraction of protein from the macroalga Palmaria palmata. LWT - Food Science and Technology, 2013, 51, 375-382.	5.2	144
22	An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 2014, 165, 489-498.	8.2	140
23	Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proceedings of the Nutrition Society, 2014, 73, 34-46.	1.0	132
24	Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins. Marine Drugs, 2015, 13, 509-528.	4.6	131
25	Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry, 2019, 43, e12451.	2.9	131
26	Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chemistry, 2017, 218, 396-405.	8.2	130
27	Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry, 2018, 244, 340-348.	8.2	127
28	Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chemistry, 2014, 145, 845-852.	8.2	125
29	Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 2013, 141, 644-653.	8.2	124
30	Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with inÂvitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 2015, 65, 112-118.	3.7	114
31	In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides, 2014, 57, 43-51.	2.4	113
32	In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. Journal of Applied Phycology, 2013, 25, 1793-1803.	2.8	112
33	Brewers' spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proceedings of the Nutrition Society, 2013, 72, 117-125.	1.0	111
34	Characterisation of proteinâ€rich isolates and antioxidative phenolic extracts from pale and black brewers' spent grain. International Journal of Food Science and Technology, 2013, 48, 1670-1681.	2.7	109
35	Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chemistry, 2009, 114, 440-446.	8.2	105
36	Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 2012, 37, 263-272.	2.4	104

#	Article	IF	CITATIONS
37	Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides, 2016, 79, 1-7.	2.4	104
38	Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Research International, 2017, 100, 416-422.	6.2	104
39	Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Research International, 2017, 100, 112-120.	6.2	102
40	In Vitro Generation and Stability of the Lactokinin β-Lactoglobulin Fragment (142–148). Journal of Dairy Science, 2004, 87, 3845-3857.	3.4	95
41	Bioactive properties of milk proteins in humans: A review. Peptides, 2015, 73, 20-34.	2.4	95
42	Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. Journal of Functional Foods, 2013, 5, 1909-1917.	3.4	93
43	Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chemistry, 2015, 176, 441-447.	8.2	93
44	The hydroxycinnamic acid content of barley and brewers' spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 2013, 141, 2567-2574.	8.2	91
45	Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods, 2020, 64, 103636.	3.4	91
46	Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction. International Dairy Journal, 2013, 32, 33-39.	3.0	90
47	In vitro α-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers' spent grain protein hydrolysates. Food Research International, 2014, 56, 100-107.	6.2	90
48	Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology, 2017, 69, 289-305.	15.1	90
49	Lactokinins: Whey protein-derived ACE inhibitory peptides. Molecular Nutrition and Food Research, 1999, 43, 165-167.	0.0	88
50	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. Journal of Functional Foods, 2017, 34, 49-58.	3.4	87
51	Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. British Journal of Nutrition, 2003, 89, 351-358.	2.3	84
52	Enzymatic Hydrolysis of Heat-Induced Aggregates of Whey Protein Isolate. Journal of Agricultural and Food Chemistry, 2012, 60, 4895-4904.	5.2	82
53	Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science and Technology, 2016, 50, 26-43.	15.1	82
54	Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International, 2018, 106, 598-606.	6.2	82

#	Article	IF	CITATIONS
55	The effect of high intakes of casein and casein phosphopeptide on calcium absorption in the rat. British Journal of Nutrition, 2000, 83, 673-680.	2.3	81
56	Modification of the furanacryloyl-l-phenylalanylglycylglycine assay for determination of angiotensin-l-converting enzyme inhibitory activity. Journal of Proteomics, 2004, 59, 127-137.	2.4	81
57	Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry, 2015, 173, 536-542.	8.2	81
58	Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers' spent grain protein isolate. Food Chemistry, 2015, 176, 64-71.	8.2	79
59	Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chemistry, 2016, 199, 246-251.	8.2	79
60	Biofunctional Properties of Caseinophosphopeptides in the Oral Cavity. Caries Research, 2012, 46, 234-267.	2.0	76
61	Selective enrichment of bioactive properties during ultrafiltration of a tryptic digest of β-lactoglobulin. Journal of Functional Foods, 2014, 9, 38-47.	3.4	75
62	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	2.5	75
63	Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chemistry, 2012, 133, 1349-1354.	8.2	73
64	Learnings from quantitative structure–activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review. RSC Advances, 2016, 6, 75400-75413.	3.6	73
65	A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic β-Cell Line and Enhances Glycemic Function in ob/ob Mice1–3. Journal of Nutrition, 2013, 143, 1109-1114.	2.9	72
66	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chemistry, 2019, 279, 70-79.	8.2	72
67	Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. International Dairy Journal, 1998, 8, 39-45.	3.0	70
68	Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food and Function, 2013, 4, 1843.	4.6	70
69	Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Research International, 2017, 94, 79-89.	6.2	68
70	Influence of κ-Casein Genetic Variant on Rennet Gel Microstructure, Cheddar Cheesemaking Properties and Casein Micelle Size. International Dairy Journal, 1998, 8, 707-714.	3.0	67
71	Potential bioactive effects of casein hydrolysates on human cultured cells. International Dairy Journal, 2009, 19, 279-285.	3.0	67
72	Molecular Characterization of Whey Protein Hydrolysate Fractions with Ferrous Chelating and Enhanced Iron Solubility Capabilities. Journal of Agricultural and Food Chemistry, 2015, 63, 2708-2714.	5.2	66

#	Article	IF	CITATIONS
73	Relationship between Some Characteristics of WPC Hydrolysates and the Enzyme Complement in Commercially Available Proteinase Preparations. International Dairy Journal, 1998, 8, 819-827.	3.0	64
74	Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chemistry, 2015, 173, 847-854.	8.2	64
75	Peptide identification from a <i>Porphyra dioica</i> protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food and Function, 2019, 10, 3421-3429.	4.6	64
76	Proteolytic and Peptidolytic Activities in Commercial Pancreatic Protease Preparations and Their Relationship to Some Whey Protein Hydrolyzate Characteristics. Journal of Agricultural and Food Chemistry, 1994, 42, 2973-2981.	5.2	63
77	Functional Properties and Bitterness of Sodium Caseinate Hydrolysates Prepared with a Bacillus Proteinase. Journal of Food Science, 1998, 63, 418-422.	3.1	63
78	Phenolic extracts of brewers' spent grain (BSG) as functional ingredients – Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chemistry, 2012, 134, 641-646.	8.2	63
79	Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 2020, 41, 1694-1717.	2.4	63
80	Aggregation Properties of Whey Protein Hydrolysates Generated withBacillus licheniformisProteinase Activities. Journal of Agricultural and Food Chemistry, 2005, 53, 1258-1265.	5.2	61
81	In vitro antioxidant and anti-inflammatory effects of brewers' spent grain protein rich isolate and its associated hydrolysates. Food Research International, 2013, 50, 205-212.	6.2	61
82	Milk proteins as a source of tryptophan-containing bioactive peptides. Food and Function, 2015, 6, 2115-2127.	4.6	60
83	Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity. Journal of Functional Foods, 2017, 34, 77-88.	3.4	60
84	Prospects for the management of type 2 diabetes using food protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Current Opinion in Food Science, 2016, 8, 19-24.	8.0	59
85	Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Food Research International, 2019, 121, 524-532.	6.2	59
86	Identification of short peptide sequences in complex milk protein hydrolysates. Food Chemistry, 2015, 184, 140-146.	8.2	58
87	Antioxidant activity and phenolic content of pressurised liquid and solid–liquid extracts from four Irish origin macroalgae. International Journal of Food Science and Technology, 2014, 49, 1765-1772.	2.7	57
88	Antioxidant effects of enzymatic hydrolysates of whey protein concentrate on cultured human endothelial cells. International Dairy Journal, 2014, 36, 128-135.	3.0	56
89	Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 2015, 27, 519-530.	2.8	56
90	Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science, 2020, 96, 103130.	3.7	54

#	Article	IF	CITATIONS
91	Calcium absorption is not increased by caseinophosphopeptides. American Journal of Clinical Nutrition, 2006, 84, 162-166.	4.7	53
92	Effect of cross-linking with transglutaminase on the heat stability and some functional characteristics of sodium caseinate. Food Research International, 2003, 36, 267-274.	6.2	52
93	Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels. Journal of Dairy Research, 2005, 72, 138-143.	1.4	51
94	Antioxidant activity of bovine casein hydrolysates produced by Ficus carica Lderived proteinase. Food Chemistry, 2014, 156, 305-311.	8.2	51
95	Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innovative Food Science and Emerging Technologies, 2016, 37, 221-228.	5.6	51
96	Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. Journal of Functional Foods, 2018, 40, 137-145.	3.4	51
97	Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Research International, 2020, 131, 108989.	6.2	51
98	Milk Protein Hydrolysates and Bioactive Peptides. , 2003, , 675-698.		49
99	<i>In vitro</i> assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture, 2015, 95, 1514-1520.	3.5	49
100	Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Analytical and Bioanalytical Chemistry, 2018, 410, 3407-3423.	3.7	49
101	Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin. Journal of Food Biochemistry, 2017, 41, e12350.	2.9	48
102	Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Research International, 2015, 77, 534-539.	6.2	47
103	Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine Î ² -casein and determination of ACE inhibitory activity. Food Chemistry, 2014, 156, 29-36.	8.2	46
104	Technofunctional properties of a brewers' spent grain protein-enriched isolate and its associated enzymatic hydrolysates. LWT - Food Science and Technology, 2014, 59, 1061-1067.	5.2	46
105	Identification of bioactive peptides from brewers' spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods, 2019, 60, 103455.	3.4	46
106	Acetolactate synthase of <i>Leuconostoc lactis</i> and its regulation of acetoin production. Journal of Dairy Research, 1984, 51, 597-604.	1.4	45
107	In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis. Food and Function, 2015, 6, 972-980.	4.6	44
108	In Silico Approaches Applied to the Study of Peptide Analogs of Ile-Pro-Ile in Relation to Their Dipeptidyl Peptidase IV Inhibitory Properties. Frontiers in Endocrinology, 2018, 9, 329.	3.5	44

#	Article	IF	CITATIONS
109	Isolation of peptides from a novel brewers spent grain protein isolate with potential to modulate glycaemic response. International Journal of Food Science and Technology, 2017, 52, 146-153.	2.7	43
110	Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science and Technology, 2019, 93, 106-124.	15.1	43
111	Modification of the nitrogen solubility properties of soy protein isolate following proteolysis and transglutaminase cross-linking. Food Research International, 2003, 36, 677-683.	6.2	39
112	Concentrated whey protein ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation. International Journal of Dairy Technology, 2015, 68, 349-356.	2.8	38
113	Milk Protein Hydrolysates and Bioactive Peptides. , 2016, , 417-482.		38
114	Functional properties of Bacillus proteinase hydrolysates of sodium caseinate incubated with transglutaminase pre- and post-hydrolysis. International Dairy Journal, 2003, 13, 135-143.	3.0	37
115	Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 2017, 231, 202-211.	8.2	37
116	Characterisation of the bioactive properties and microstructure of chickpea protein-based oil in water emulsions. Food Research International, 2019, 121, 577-585.	6.2	36
117	Autolysis of selected Lactobacillus helveticus adjunct strains during Cheddar cheese ripening. International Dairy Journal, 2006, 16, 797-804.	3.0	35
118	Identification of angiotensin converting enzyme inhibitory and antioxidant peptides in a whey protein concentrate hydrolysate produced at semiâ€pilot scale. International Journal of Food Science and Technology, 2017, 52, 1751-1759.	2.7	35
119	Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Food Research International, 2020, 136, 109309.	6.2	35
120	Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. Journal of Functional Foods, 2022, 92, 105052.	3.4	35
121	Functionality of Bacillus proteinase hydrolysates of sodium caseinate. International Dairy Journal, 2002, 12, 737-748.	3.0	34
122	Cheddar cheese cooking temperature induces differential lactococcal cell permeabilization and autolytic responses as detected by flow cytometry: implications for intracellular enzyme accessibility. Journal of Applied Microbiology, 2005, 99, 1007-1018.	3.1	34
123	Insulinotropic properties of whey protein hydrolysates and impact of peptide fractionation on insulinotropic response. International Dairy Journal, 2013, 32, 163-168.	3.0	34
124	The effect of time and origin of harvest on the in vitro biological activity of Palmaria palmata protein hydrolysates. Food Research International, 2014, 62, 746-752.	6.2	34
125	Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica. Journal of Applied Phycology, 2017, 29, 2439-2450.	2.8	33
126	A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chemistry, 2022, 367, 130661.	8.2	33

#	Article	IF	CITATIONS
127	Zymogen Activation in Pancreatic Endoproteolytic Preparations and Influence on Some Whey Protein Hydrolysate Characteristics. Journal of Food Science, 1995, 60, 227-233.	3.1	32
128	Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket (<i>Gryllodes sigillatus</i>) proteins. Food and Function, 2018, 9, 407-416.	4.6	32
129	Thermal stability of soy protein isolate and hydrolysate ingredients. Food Chemistry, 2008, 108, 503-510.	8.2	31
130	The effect of consuming Palmaria palmata-enriched bread on inflammatory markers, antioxidant status, lipid profile and thyroid function in a randomised placebo-controlled intervention trial in healthy adults. European Journal of Nutrition, 2016, 55, 1951-1962.	3.9	31
131	Cheesemaking, compositional and functional characteristics of low-moisture part-skim Mozzarella cheese from bovine milks containing l̂º-casein AA, AB or BB genetic variants. Journal of Dairy Research, 1998, 65, 307-315.	1.4	30
132	Evaluation of the antioxidant capacity of a milk protein matrix <i>in vitro</i> and <i>in vivo</i> in women aged 50–70 years. International Journal of Food Sciences and Nutrition, 2016, 67, 325-334.	2.8	30
133	Immunomodulatory potential of a brewers' spent grain protein hydrolysate incorporated into low-fat milk following <i>in vitro </i> gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 2015, 66, 672-676.	2.8	28
134	Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans. Journal of Agricultural and Food Chemistry, 2018, 66, 4352-4363.	5.2	28
135	Extent of hydrolysis effects on casein hydrolysate bioactivity: Evaluation using the human Jurkat T cell line. International Dairy Journal, 2011, 21, 777-782.	3.0	27
136	Utilisation of the isobole methodology to study dietary peptide–drug and peptide–peptide interactive effects on dipeptidyl peptidase IV (DPP-IV) inhibition. Food and Function, 2015, 6, 312-319.	4.6	26
137	Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin. Food and Function, 2016, 7, 3437-3443.	4.6	26
138	A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasomeâ€mediated inflammation and improving insulin signaling. Molecular Nutrition and Food Research, 2016, 60, 2421-2432.	3.3	26
139	Generation of wheat gluten hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. Food and Function, 2017, 8, 2249-2257.	4.6	26
140	Role of carbohydrate conjugation on the emulsification and antioxidant properties of intact and hydrolysed whey protein concentrate. Food Hydrocolloids, 2019, 88, 170-179.	10.7	25
141	Binding of ions and hydrophobie probes to α-lactalbumin and k-casein as determined by analytical affinity chromatography. Archives of Biochemistry and Biophysics, 1989, 268, 239-248.	3.0	24
142	Physicochemical and Nitrogen Solubility Properties of Bacillus Proteinase Hydrolysates of Sodium Caseinate Incubated with Transglutaminase Pre- and Post-hydrolysis. Journal of Agricultural and Food Chemistry, 2002, 50, 5429-5436.	5.2	24
143	Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase <scp>IV</scp> inhibitory properties. Journal of the Science of Food and Agriculture, 2017, 97, 1093-1101.	3.5	24
144	Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties. Journal of Applied Microbiology, 2006, 100, 893-901.	3.1	23

#	Article	IF	CITATIONS
145	Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 2008, 41, 43-52.	6.2	23
146	Membrane fractionation of a $\hat{1}^2$ -lactoglobulin tryptic digest: Effect of the pH. Journal of Food Engineering, 2013, 114, 83-89.	5.2	23
147	Peptide identification and angiotensin converting enzyme (ACE) inhibitory activity in prolyl endoproteinase digests of bovine αs-casein. Food Chemistry, 2015, 188, 210-217.	8.2	23
148	In Vitro Characterisation of the Antioxidative Properties of Whey Protein Hydrolysates Generated under pH- and Non pH-Controlled Conditions. Foods, 2020, 9, 582.	4.3	23
149	Direct nanoHPLC-ESI-QTOF MS/MS analysis of tryptic caseinophosphopeptides. Food Chemistry, 2010, 123, 753-759.	8.2	22
150	Angiotensin Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory, and Antioxidant Activities of a Blue Mussel (<i>Mytilus edulis</i>) Meat Protein Extract and Its Hydrolysates. Journal of Aquatic Food Product Technology, 2016, 25, 1221-1233.	1.4	22
151	Functional properties of bovine milk protein isolate and associated enzymatic hydrolysates. International Dairy Journal, 2018, 81, 113-121.	3.0	22
152	A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science, 2020, 7, .	2.5	22
153	Whey protein isolate polydispersity affects enzymatic hydrolysis outcomes. Food Chemistry, 2013, 141, 2334-2342.	8.2	21
154	Use of 31P NMR and FTIR to investigate key milk mineral equilibria and their interactions with micellar casein during heat treatment. International Dairy Journal, 2018, 81, 12-18.	3.0	21
155	In Vitro Digestibility and Antioxidant Activity of Plant Protein Isolate and Milk Protein Concentrate Blends. Catalysts, 2021, 11, 787.	3.5	21
156	Distribution of microbial flora, intracellular enzymes and compositional indices throughout a 12kg Cheddar cheese block during ripening. International Dairy Journal, 2009, 19, 321-329.	3.0	20
157	Substrate specificity of glutamyl endopeptidase (GE): Hydrolysis studies with a bovine α-casein preparation. Food Chemistry, 2013, 136, 501-512.	8.2	20
158	Total Solids Content and Degree of Hydrolysis Influence Proteolytic Inactivation Kinetics Following Whey Protein Hydrolysate Manufacture. Journal of Agricultural and Food Chemistry, 2013, 61, 10135-10144.	5.2	19
159	InÂvitro antioxidant and immunomodulatory activity of transglutaminase-treated sodium caseinate hydrolysates. International Dairy Journal, 2016, 63, 107-114.	3.0	19
160	Effects of depleting ionic strength on 31P nuclear magnetic resonance spectra of micellar casein during membrane separation and diafiltration of skim milk. Journal of Dairy Science, 2017, 100, 6949-6961.	3.4	19
161	Boarfish (<i>Capros aper</i>) protein hydrolysate has potent insulinotropic and <scp>GLP</scp> â€ secretory activity <i>inÂvitro</i> and acute glucose lowering effects in mice. International Journal of Food Science and Technology, 2019, 54, 271-281.	2.7	19
162	Interfacial/foaming properties and antioxidant activity of a silkworm (Bombyx mori) pupae protein concentrate. Food Hydrocolloids, 2020, 103, 105645.	10.7	19

#	Article	IF	CITATIONS
163	Protein extraction and bioactive hydrolysate generation from two microalgae, Porphyridium purpureum and Phaeodactylum tricornutum. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 0, 1, .	2.4	19
164	The Use of Herbs, Spices, and Whey Proteins as Natural Flavor Enhancers and Their Effect on the Sensory Acceptability of Reduced-Salt Chilled Ready-Meals. Journal of Culinary Science and Technology, 2013, 11, 222-240.	1.4	17
165	Application of ultrafiltration in the study of phenolic isolates and melanoidins from pale and black brewers' spent grain. International Journal of Food Science and Technology, 2014, 49, 2252-2259.	2.7	17
166	Membrane fractionation of a βâ€lactoglobulin tryptic digest: effect of the membrane characteristics. Journal of Chemical Technology and Biotechnology, 2014, 89, 508-515.	3.2	17
167	Influence of Hydrolysis on the Bioactive Properties and Stability of Chickpea-Protein-Based O/W Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 10118-10127.	5.2	17
168	Intracellular pH and the role of D-lactate dehydrogenase in the production of metabolic end products by <i>Leuconostoc lactis</i> . Journal of Dairy Research, 1992, 59, 359-367.	1.4	16
169	Nutraceutical and functional food ingredients for food and pharmaceutical applications. British Journal of Nutrition, 2001, 85, 635-635.	2.3	16
170	Phenolic-enriched fractions from brewers' spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. Journal of the Science of Food and Agriculture, 2014, 94, 1373-1379.	3.5	16
171	Assessment of the microstructural characteristics and the in vitro bioactive properties of sunflower oil-based emulsions stabilized by fava bean (vicia faba) protein. Food Hydrocolloids, 2019, 97, 105220.	10.7	16
172	Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates. Foods, 2022, 11, 516.	4.3	16
173	Hydrolysis of αs1- and β-casein-derived peptides with a broad specificity aminopeptidase and proline specific aminopeptidases fromLactococcus lactissubsp.cremorisAM2. FEBS Letters, 1999, 445, 321-324.	2.8	15
174	Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture. Food and Function, 2013, 4, 1709.	4.6	15
175	Milk protein hydrolysates activate 5-HT2C serotonin receptors: influence of the starting substrate and isolation of bioactive fractions. Food and Function, 2013, 4, 728.	4.6	15
176	Milk protein-derived peptides induce 5-HT2C-mediated satiety inÂvivo. International Dairy Journal, 2014, 38, 55-64.	3.0	15
177	Peptide composition and dipeptidyl peptidase IV inhibitory properties of β-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Research International, 2017, 99, 84-90.	6.2	15
178	Integration of high and low field 1H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening. International Dairy Journal, 2019, 91, 155-164.	3.0	15
179	A Narrative Review of the Antiâ€Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Molecular Nutrition and Food Research, 2020, 64, e2000403.	3.3	15
180	Insolubility in milk protein concentrates: potential causes and strategies to minimize its occurrence. Critical Reviews in Food Science and Nutrition, 2022, 62, 6973-6989.	10.3	15

#	Article	IF	CITATIONS
181	Purification and characterization of a lysine-p-nitroanilide hydrolase, a broad specificity aminopeptidase, from the cytoplasm of Lactococcus lactis subsp. cremoris AM2. Journal of Dairy Research, 1999, 66, 257-270.	1.4	14
182	Growth inhibitory effects of casein hydrolysates on human cancer cell lines. Journal of Dairy Research, 2010, 77, 176-182.	1.4	14
183	Extraction and Enrichment of Protein from Red and Green Macroalgae. Methods in Molecular Biology, 2015, 1308, 103-108.	0.9	14
184	Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis. Journal of the Science of Food and Agriculture, 2017, 97, 4652-4655.	3.5	14
185	Impact of enzyme inactivation conditions during the generation of whey protein hydrolysates on their physicochemical and bioactive properties. International Journal of Food Science and Technology, 2018, 53, 219-227.	2.7	14
186	Angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory activities of transglutaminase treated sodium caseinate hydrolysates. International Dairy Journal, 2018, 78, 85-91.	3.0	14
187	Twice daily oral administration of Palmaria palmata protein hydrolysate reduces food intake in streptozotocin induced diabetic mice, improving glycaemic control and lipid profiles. Journal of Functional Foods, 2020, 73, 104101.	3.4	14
188	Enzymatic Modification of Porphyra dioica-Derived Proteins to Improve their Antioxidant Potential. Molecules, 2020, 25, 2838.	3.8	14
189	Generation of phenolic-rich extracts from brewers' spent grain and characterisation of their in vitro and in vivo activities. Innovative Food Science and Emerging Technologies, 2021, 68, 102617.	5.6	14
190	Effect of glutamine peptide on baking characteristics of bread using experimental design. European Food Research and Technology, 2001, 212, 192-197.	3.3	13
191	A study of the ability of bioactive extracts from brewers' spent grain to enhance the antioxidant and immunomodulatory potential of food formulations following <i>in vitro</i> digestion. International Journal of Food Sciences and Nutrition, 2015, 66, 230-235.	2.8	13
192	Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting (Micromesistiuspoutassou) Protein Hydrolysates. Marine Drugs, 2021, 19, 383.	4.6	13
193	Impact of enzyme preparation and degree of hydrolysis on peptide profile and nitrogen solubility of sodium caseinate hydrolysates. International Journal of Food Science and Technology, 2016, 51, 2123-2131.	2.7	12
194	Aqueous and enzyme-extracted phenolic compounds from brewers' spent grain (BSG): Assessment of their antioxidant potential. Journal of Food Biochemistry, 2017, 41, e12370.	2.9	12
195	Variable Glycemic Responses to Intact and Hydrolyzed Milk Proteins in Overweight and Obese Adults Reveal the Need for Precision Nutrition. Journal of Nutrition, 2019, 149, 88-97.	2.9	12
196	Effect of enzymatically hydrolysed brewers' spent grain supplementation on the rheological, textural and sensory properties of muffins. Future Foods, 2021, 4, 100085.	5.4	12
197	Investigation of the Substrate Specificity of Glutamyl Endopeptidase Using Purified Bovine β-Casein and Synthetic Peptides. Journal of Agricultural and Food Chemistry, 2013, 61, 3193-3204.	5.2	11
198	Bioactive Peptides from Fish Protein By-Products. Reference Series in Phytochemistry, 2019, , 355-388.	0.4	11

#	Article	IF	CITATIONS
199	Whey Proteins and Peptides in Human Health. , 0, , 285-343.		10
200	Physicochemical properties and residual antigenicity of transglutaminase cross-linked sodium caseinate hydrolysates. International Dairy Journal, 2012, 23, 18-23.	3.0	10
201	Whey protein hydrolysate induced modulation of endothelial cell gene expression. Journal of Functional Foods, 2018, 40, 102-109.	3.4	10
202	Stability to thermal treatment of dipeptidyl peptidaseâ€ŧV inhibitory activity of a boarfish (<i>Capros) Tj ETQq0 0 of Food Science and Technology, 2021, 56, 158-165.</i>	0 rgBT /C 2.7	overlock 10 Tf 10
203	Macroalgal protein hydrolysates from Palmaria palmata influence the â€`incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. European Journal of Nutrition, 2021, 60, 4439-4452.	3.9	10
204	Investigation of the flowability, thermal stability and emulsification properties of two milk protein concentrates having different levels of native whey proteins. Food Research International, 2021, 147, 110576.	6.2	10
205	Characterisation and quantification of the reaction(s) catalysed by transglutaminase using the o-phthaldialdehyde reagent. Molecular Nutrition and Food Research, 2003, 47, 207-212.	0.0	9
206	Characterisation of the physicochemical, residual antigenicity and cell activity properties of transglutaminase cross-linked sodium caseinate hydrolysates. International Dairy Journal, 2013, 33, 49-54.	3.0	9
207	Structure and in vitro bioactive properties of O/W emulsions generated with fava bean protein hydrolysates. Food Research International, 2021, 150, 110780.	6.2	9
208	Contribution of Hydrolysis and Drying Conditions to Whey Protein Hydrolysate Characteristics and In Vitro Antioxidative Properties. Antioxidants, 2022, 11, 399.	5.1	9
209	Transformation of Gluconobacter oxydans subsp. suboxydans by electroporation. Canadian Journal of Microbiology, 1994, 40, 491-494.	1.7	8
210	Bioactive Peptides From Fish Protein By-Products. Reference Series in Phytochemistry, 2018, , 1-35.	0.4	8
211	A cell-based evaluation of a non-essential amino acid formulation as a non-bioactive control for activation and stimulation of muscle protein synthesis using ex vivo human serum. PLoS ONE, 2019, 14, e0220757.	2.5	8
212	Contribution of in vitro simulated gastrointestinal digestion to the antioxidant activity of Porphyra dioica conchocelis. Algal Research, 2020, 51, 102085.	4.6	8
213	Physicochemical and gelling properties of whey protein hydrolysates generated at 5 and 50°C using Alcalase® and Neutrase®, effect of total solids and incubation time. International Dairy Journal, 2020, 110, 104792.	3.0	8
214	In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests. Food and Function, 2021, 12, 12372-12380.	4.6	8
215	Impact of variation in calcium level on the technofunctional properties of milk protein concentrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128741.	4.7	8
216	Thermal behavior of emulsions manufactured with soy protein ingredients. Food Research International, 2008, 41, 813-818.	6.2	7

#	Article	IF	CITATIONS
217	Antioxidant activity of co-products from milk fat processing and their enzymatic hydrolysates obtained with different proteolytic preparations. International Dairy Journal, 2016, 60, 70-77.	3.0	7
218	Technical note: Fourier transform infrared spectral analysis in tandem with 31P nuclear magnetic resonance spectroscopy elaborates detailed insights into phosphate partitioning during skimmed milk microfiltration and diafiltration. Journal of Dairy Science, 2018, 101, 10750-10758.	3.4	7
219	Exploring the Use of a Modified High-Temperature, Short-Time Continuous Heat Exchanger with Extended Holding Time (HTST-EHT) for Thermal Inactivation of Trypsin Following Selective Enzymatic Hydrolysis of the I²-Lactoglobulin Fraction in Whey Protein Isolate. Foods, 2019, 8, 367.	4.3	7
220	Emulsification properties of bovine milk protein isolate and associated enzymatic hydrolysates. International Dairy Journal, 2020, 110, 104811.	3.0	7
221	Cardioprotective Peptides from Marine Sources. Current Protein and Peptide Science, 2013, 14, 162-172.	1.4	7
222	A Fish-Derived Protein Hydrolysate Induces Postprandial Aminoacidaemia and Skeletal Muscle Anabolism in an In Vitro Cell Model Using Ex Vivo Human Serum. Nutrients, 2021, 13, 647.	4.1	6
223	Impact of thermal inactivation conditions on the residual proteolytic activity and the viscosity properties of whey protein concentrate enzymatic hydrolysates. Food Hydrocolloids, 2022, 124, 107333.	10.7	6
224	Comparative analysis of the autolytic potential of Lactobacillus helveticus strains during Cheddar cheese ripening. International Journal of Dairy Technology, 2005, 58, 207-213.	2.8	5
225	Caseinophosphopeptide enrichment and identification. International Journal of Food Science and Technology, 2012, 47, 2235-2242.	2.7	5
226	Temporal Change in Biomarkers of Bone Turnover Following Late Evening Ingestion of a Calcium-Fortified, Milk-Based Protein Matrix in Postmenopausal Women with Osteopenia. Nutrients, 2019, 11, 1413.	4.1	5
227	Phycobiliproteins, nitrogenous compounds and fatty acid contents in field-collected and cultured gametophytes of Porphyra dioica, a red sea vegetable. Journal of Applied Phycology, 2019, 31, 3849-3860.	2.8	5
228	Physicochemical properties and water interactions of milk protein concentrate with two different levels of undenatured whey protein. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127516.	4.7	5
229	Immunomodulatory activity of 5ÂkDa permeate fractions of casein hydrolysates generated using a range of enzymes in Jurkat T cells and RAW264.7 macrophages. International Dairy Journal, 2019, 91, 9-17.	3.0	4
230	The insulinotropic and incretin response to feeding a milk based protein matrix in healthy young women. Journal of Functional Foods, 2020, 72, 104056.	3.4	4
231	The Production of Bioactive Peptides from Milk Proteins. Food Engineering Series, 2021, , 447-497.	0.7	4
232	Impact of total calcium in milk protein concentrate on its interaction with the aqueous phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128068.	4.7	4
233	In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. European Food Research and Technology, 0, , 1.	3.3	4
234	Purification and characterization of the d-lactate dehydrogenase from Leuconostoc lactis. International Journal of Biochemistry & Cell Biology, 1986, 18, 31-38.	0.5	3

#	Article	lF	CITATIONS
235	Potential immunomodulatory effects of casein-derived bioactive peptides in human T cells. Proceedings of the Nutrition Society, 2015, 74, .	1.0	3
236	Enzyme-Assisted Release of Antioxidant Peptides from Porphyra dioica Conchocelis. Antioxidants, 2021, 10, 249.	5.1	3
237	In Vitro and In Vivo Effects of Palmaria palmata Derived Peptides on Glucose Metabolism. International Journal of Peptide Research and Therapeutics, 2021, 27, 1667-1676.	1.9	3
238	Blue Whiting Protein Hydrolysates Exhibit Antioxidant and Immunomodulatory Activities in Stimulated Murine RAW264.7 Cells. Applied Sciences (Switzerland), 2021, 11, 9762.	2.5	3
239	Blue Whiting (Micromesistius poutassou) Protein Hydrolysates Increase GLP-1 Secretion and Proglucagon Production in STC-1 Cells Whilst Maintaining Caco-2/HT29-MTX Co-Culture Integrity. Marine Drugs, 2022, 20, 112.	4.6	3
240	Solubilisation of calcium and magnesium from the marine red algae <i>Lithothamnion calcareum</i> . International Journal of Food Science and Technology, 2014, 49, 1600-1606.	2.7	2
241	Relative quantitation analysis of the substrate specificity of glutamyl endopeptidase with bovine α-caseins. Food Chemistry, 2015, 167, 463-467.	8.2	2
242	Methodologies for bioactivity assay: biochemical study. , 2021, , 103-153.		2
243	Application of metabolomics to mining effects of milk peptides on cellular metabolism. Proceedings of the Nutrition Society, 2012, 71, .	1.0	1
244	Quantitative analysis of bovine β-casein hydrolysates obtained using glutamyl endopeptidase. LWT - Food Science and Technology, 2015, 63, 1334-1338.	5.2	1
245	Rehydration and water sorption behaviour of bovine milk protein isolate and its associated enzymatic hydrolysates. International Dairy Journal, 2022, 128, 105323.	3.0	1
246	Potential bioactive properties of casein hydrolysates. Proceedings of the Nutrition Society, 2008, 67, .	1.0	0
247	Evaluation of cellular and antioxidant effects of casein hydrolysates. Proceedings of the Nutrition Society, 2010, 69, .	1.0	0
248	Potential of phenolic extracts from Brewer's spent grain to protect against oxidant-induced DNA damage. Proceedings of the Nutrition Society, 2011, 70, .	1.0	0
249	An investigation into the possible beneficial effects of milk hydrolysates on insulin secretion and metabolic function. Proceedings of the Nutrition Society, 2012, 71, .	1.0	0
250	Cellular in vitro bioactivity of protein hydrolysates from brewers' spent grain. Proceedings of the Nutrition Society, 2013, 72, .	1.0	0
251	The immunomodulatory potential of in vitro digested low-fat milk supplemented with brewers' spent grain protein hydrolysate; selection of a non-cytotoxic level of digestate. Proceedings of the Nutrition Society, 2015, 74, .	1.0	0
252	Effect of enzyme-extracted brewers' spent grain protein hydrolysates on inflammatory response in cells associated with atherosclerosis. Proceedings of the Nutrition Society, 2016, 75, .	1.0	0

0

#	Article	IF	CITATIONS
253	Caseinophosphopeptides. , 2019, , 300-312.		0

Protein Hydrolysates and Peptides. , 2022, , 154-166.