Jiabin Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640106/publications.pdf Version: 2024-02-01

LIARIN CIU

#	Article	IF	CITATIONS
1	Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1740.	6.1	60
2	Complete Mapping of Interacting Charging States in Single Coupled Colloidal Quantum Dot Molecules. ACS Nano, 2022, 16, 5566-5576.	14.6	7
3	Healing Diabetic Ulcers with MoO _{3â^'} <i>_X</i> Nanodots Possessing Intrinsic ROS‣cavenging and Bacteriaâ€Killing Capacities. Small, 2022, 18, e2107137.	10.0	30
4	Coupled Colloidal Quantum Dot Molecules. Accounts of Chemical Research, 2021, 54, 1178-1188.	15.6	34
5	Dual Active Center-Assembled Cu ₃₁ S ₁₆ –Co _{9-<i>x</i>} Ni _{<i>x</i>} S ₈ Heterodimers: Coherent Interface Engineering Induces Multihole Accumulation for Light-Enhanced Electrocatalytic Oxygen Evolution, ACS Applied Materials & amp: Interfaces, 2021, 13, 20094-20104.	8.0	7
6	Surface active-site engineering in hierarchical PtNi nanocatalysts for efficient triiodide reduction reaction. Nano Research, 2021, 14, 4714-4718.	10.4	11
7	Semiconductor Bowâ€ī ie Nanoantenna from Coupled Colloidal Quantum Dot Molecules. Angewandte Chemie, 2021, 133, 14588-14593.	2.0	1
8	Semiconductor Bowâ€īe Nanoantenna from Coupled Colloidal Quantum Dot Molecules. Angewandte Chemie - International Edition, 2021, 60, 14467-14472.	13.8	11
9	A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective. Chemical Research in Chinese Universities, 2021, 37, 870-879.	2.6	2
10	Rational Constructed Ultra-Small Iron Oxide Nanoprobes Manifesting High Performance for T1-Weighted Magnetic Resonance Imaging of Glioblastoma. Nanomaterials, 2021, 11, 2601.	4.1	7
11	Rapidly liver-clearable rare-earth core–shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. Journal of Nanobiotechnology, 2021, 19, 369.	9.1	8
12	Neck Barrier Engineering in Quantum Dot Dimer Molecules via Intraparticle Ripening. Journal of the American Chemical Society, 2021, 143, 19816-19823.	13.7	11
13	Solvent Tailored Strategy for Synthesis of Ultrasmall Ag ₂ S Quantum Dots with Near-Infrared-II Luminescence. Journal of Nanoscience and Nanotechnology, 2019, 19, 4549-4555.	0.9	6
14	Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nature Communications, 2019, 10, 5401.	12.8	86
15	Electronic coupling in colloidal quantum dot molecules; the case of CdSe/CdS core/shell homodimers. Journal of Chemical Physics, 2019, 151, 224501.	3.0	27
16	Fluorine Grafted Cu ₇ S ₄ –Au Heterodimers for Multimodal Imaging Guided Photothermal Therapy with High Penetration Depth. Journal of the American Chemical Society, 2018, 140, 5890-5894.	13.7	125
17	A visual photothermal paper sensor for H2S recognition through rational modulation LSPR wavelength of plasmonics. Science China Chemistry, 2018, 61, 368-374.	8.2	12
18	Plasmonâ€Enhanced Photoelectrical Hydrogen Evolution on Monolayer MoS ₂ Decorated Cu _{1.75} Sâ€Au Nanocrystals. Small, 2017, 13, 1602235.	10.0	34

Jiabin Cui

#	Article	IF	CITATIONS
19	Monolayer MoS2 decorated Cu7S4-Au nanocatalysts for sensitive and selective detection of mercury(II). Science China Materials, 2017, 60, 352-360.	6.3	18
20	In-situ wet tearing based subnanometer MoSeS for efficient hydrogen evolution. Science China Materials, 2017, 60, 929-936.	6.3	7
21	Ultrasmall Cu ₇ S ₄ @MoS ₂ Heteroâ€Nanoframes with Abundant Active Edge Sites for Ultrahighâ€Performance Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6612-6615.	2.0	14
22	Highly efficient PdCu3 nanocatalysts for Suzuki–Miyaura reaction. Nano Research, 2016, 9, 2912-2920.	10.4	29
23	Ultrasmall Cu ₇ S ₄ @MoS ₂ Heteroâ€Nanoframes with Abundant Active Edge Sites for Ultrahighâ€Performance Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6502-6505.	13.8	128
24	Ultrahigh ¹⁹ F Loaded Cu _{1.75} S Nanoprobes for Simultaneous ¹⁹ F Magnetic Resonance Imaging and Photothermal Therapy. ACS Nano, 2016, 10, 1355-1362.	14.6	82
25	Recent developments of low-toxicity NIR II quantum dots for sensing and bioimaging. TrAC - Trends in Analytical Chemistry, 2016, 80, 149-155.	11.4	75
26	A facile strategy for the synthesis of monodispersed W ₁₇ O ₄₇ nanoneedles. RSC Advances, 2016, 6, 29378-29382.	3.6	6
27	Cu ₇ S ₄ Nanosuperlattices with Greatly Enhanced Photothermal Efficiency. Small, 2015, 11, 4183-4190.	10.0	85
28	Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Research, 2015, 8, 1932-1943.	10.4	28
29	Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints. Analytical Chemistry, 2015, 87, 11592-11598.	6.5	55
30	Cu _{2â^'x} S/graphene oxide nanocomposites for efficient photocatalysis driven by real sunlight. RSC Advances, 2015, 5, 94375-94379.	3.6	10
31	Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions. Nano Letters, 2015, 15, 6295-6301.	9.1	246
32	Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Research, 2015, 8, 4038-4047.	10.4	52
33	Magnetic Recyclable Nanocomposite Catalysts with Good Dispersibility and High Catalytic Activity. Journal of Physical Chemistry C, 2014, 118, 3062-3068.	3.1	50
34	Nanocomposite-based rapid, visual, and selective luminescence turn-on assay for Hg2+ sensing in aqueous media. Talanta, 2013, 115, 512-517.	5.5	7
35	Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. Journal of Materials Chemistry B, 2013, 1, 1333.	5.8	56
36	Neck Barrier Tailors Photon Bunching Characteristics in Single Quantum Dot Dimer Molecules. , 0, , .		0