
Yuriy Garbovskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals, 2015, 5, 501-533.	1.0	121
2	Liquid crystal phase shifters at millimeter wave frequencies. Journal of Applied Physics, 2012, 111, .	1.1	78
3	Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges. Nanomaterials, 2017, 7, 361.	1.9	75
4	Liquid Crystalline Colloids of Nanoparticles. Solid State Physics, 2010, 62, 1-74.	1.3	74
5	Switching between purification and contamination regimes governed by the ionic purity of nanoparticles dispersed in liquid crystals. Applied Physics Letters, 2016, 108, .	1.5	61
6	Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges. Liquid Crystals Reviews, 2018, 6, 17-52.	1.1	37
7	Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles. Nano Express, 2021, 2, 012004.	1.2	33
8	Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals. Applied Physics Letters, 2015, 107, .	1.5	32
9	Electrical properties of liquid crystal nano-colloids analysed from perspectives of the ionic purity of nano-dopants. Liquid Crystals, 2016, 43, 648-653.	0.9	32
10	Versatile nonlinear-optical materials based on mesomorphic metal alkanoates: design, properties, and applications. Liquid Crystals Reviews, 2015, 3, 28-57.	1.1	31
11	Fast dynamic holographic recording based on conductive ionic metal-alkanoate liquid crystals and smectic glasses. Optics Letters, 2006, 31, 235.	1.7	30
12	Adsorption/desorption of ions in liquid crystal nanocolloids: the applicability of the Langmuir isotherm, impact of high electric fields and effects of the nanoparticle's size. Liquid Crystals, 2016, 43, 853-860.	0.9	28
13	Impact of contaminated nanoparticles on the non-monotonous change in the concentration of mobile ions in liquid crystals. Liquid Crystals, 2016, 43, 664-670.	0.9	26
14	Increasing the switching speed of liquid crystal devices with magnetic nanorods. Applied Physics Letters, 2012, 101, 181109.	1.5	25
15	Kinetics of Ion-Capturing/Ion-Releasing Processes in Liquid Crystal Devices Utilizing Contaminated Nanoparticles and Alignment Films. Nanomaterials, 2018, 8, 59.	1.9	25
16	Strong thermal optical nonlinearity caused by CdSe nanoparticles synthesised in smectic ionic liquid crystals, 2013, 40, 1377-1382.	0.9	23
17	Nanomaterials in Liquid Crystals as Ion-Generating and Ion-Capturing Objects. Crystals, 2018, 8, 264.	1.0	23
18	Electrical conductivity of lyotropic and thermotropic ionic liquid crystals consisting of metal alkanoates. Liquid Crystals, 2007, 34, 599-603.	0.9	22

YURIY GARBOVSKIY

#	Article	IF	CITATIONS
19	Ions in liquid crystals doped with nanoparticles: conventional and counterintuitive temperature effects. Liquid Crystals, 2017, 44, 1402-1408.	0.9	22
20	lons and size effects in nanoparticle/liquid crystal colloids sandwiched between two substrates. The case of two types of fully ionized species. Chemical Physics Letters, 2017, 679, 77-85.	1.2	22
21	Enhancement of frequency modulation response time for polymer-dispersed liquid crystal. Liquid Crystals, 2016, 43, 1390-1396.	0.9	21
22	Ion capturing/ion releasing films and nanoparticles in liquid crystal devices. Applied Physics Letters, 2017, 110, .	1.5	21
23	Time-dependent electrical properties of liquid crystal cells: unravelling the origin of ion generation. Liquid Crystals, 2018, 45, 1540-1548.	0.9	20
24	Optical/ferroelectric characterization of BaTiO ₃ and PbTiO ₃ colloidal nanoparticles and their applications in hybrid materials technologies. Applied Optics, 2013, 52, E34.	0.9	19
25	Nanoparticle-Enabled Ion Trapping and Ion Generation in Liquid Crystals. Advances in Condensed Matter Physics, 2018, 2018, 1-8.	0.4	19
26	Metallic surfaces as alignment layers for nondisplay applications of liquid crystals. Applied Physics Letters, 2011, 98, .	1.5	18
27	Electro-Optical Switching of Dual-Frequency Nematic Liquid Crystals: Regimes of Thin and Thick Cells. Crystals, 2019, 9, 314.	1.0	18
28	Fast Switching Dual-Frequency Nematic Liquid Crystal Tunable Filters. ACS Photonics, 2021, 8, 1222-1231.	3.2	17
29	Nanoparticle enabled thermal control of ions in liquid crystals. Liquid Crystals, 2017, 44, 948-955.	0.9	16
30	Dynamic grating recording in lyotropic ionic smectics of metal alkanoates doped with electrochromic impurities. Optical Materials, 2009, 31, 1109-1114.	1.7	15
31	Inverse "guest–host―effect: ferroelectric nanoparticles mediated switching of nematic liquid crystals. Nanoscale, 2020, 12, 16438-16442.	2.8	14
32	Tunable optical and nonlinear optical response of smectic glasses based on cobalt alkanoates. Liquid Crystals, 2010, 37, 1411-1418.	0.9	13
33	Emerging Applications of Ferroelectric Nanoparticles in Materials Technologies, Biology and Medicine. , 0, , .		13
34	The purification and contamination of liquid crystals by means of nanoparticles. The case of weakly ionized species. Chemical Physics Letters, 2016, 658, 331-335.	1.2	13
35	Ferromagnetic and ferroelectric nanoparticles in liquid crystals. Series in Sof Condensed Matter, 2016, , 657-693.	0.1	13
36	Adsorption of ions onto nanosolids dispersed in liquid crystals: Towards understanding the ion trapping effect in nanocolloids. Chemical Physics Letters, 2016, 651, 144-147.	1.2	13

YURIY GARBOVSKIY

#	Article	IF	CITATIONS
37	Intensity dependent nonlinear absorption coefficients and nonlinear refractive indices of glass-forming ionic liquid crystals doped with gold and silver nanoparticles. Journal of Molecular Liquids, 2018, 267, 56-60.	2.3	13
38	Enhanced optical nonlinearity of the "nonlinear host–nonlinear guest―glassy nanocomposites made of the mesomorphic cobalt octanoate and noble metal nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 648.	0.9	11
39	Nonlinear optical properties of composites based on conductive metal-alkanoate liquid crystals. Opto-electronics Review, 2006, 14, .	2.4	10
40	Science and technology of stressed liquid crystals: display and non-display applications. Phase Transitions, 2017, 90, 773-779.	0.6	10
41	On the Analogy between Electrolytes and Ion-Generating Nanomaterials in Liquid Crystals. Nanomaterials, 2020, 10, 403.	1.9	10
42	Fast Nolinear Optical Mechanisms in Bi-Layered Cells Composed by Lyotropic Ionic Liquid Crystals with Dye and Viologen Films. Molecular Crystals and Liquid Crystals, 2009, 508, 296/[658]-308/[670].	0.4	9
43	Switchable Response of Ferroelectric Nanoparticle Doped Polymer-Dispersed Liquid Crystals. Journal of Nanoscience and Nanotechnology, 2016, 16, 11125-11129.	0.9	9
44	Single-step colloidal processing of stable aqueous dispersions of ferroelectric nanoparticles for biomedical imaging. Materials Research Express, 2014, 1, 045401.	0.8	8
45	Cholesteric liquid crystal glass platinum acetylides. Materials Research Society Symposia Proceedings, 2014, 1698, 42.	0.1	6
46	Static and dynamic electro-optical properties of liquid crystals mediated by ferroelectric polymer films. RSC Advances, 2018, 8, 1889-1898.	1.7	6
47	Frequency-dependent electro-optics of liquid crystal devices utilizing nematics and weakly conducting polymers. Advanced Optical Technologies, 2018, 7, 243-248.	0.9	5
48	Probing Optical Nonlinearities of Unconventional Glass Nanocomposites Made of Ionic Liquid Crystals and Bimetallic Nanoparticles. Nanomaterials, 2022, 12, 924.	1.9	5
49	Magneto-Optical Properties of a Ferronematic Colloid. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	4
50	Evaluating the Concentration of Ions in Liquid Crystal Cells: Hidden Factors and Useful Techniques. Proceedings (mdpi), 2021, 62, .	0.2	4
51	Order parameter of dual-frequency nematic liquid crystals measured over a wide range of thicknesses. Liquid Crystals, 2020, 47, 1338-1344.	0.9	3
52	Biological Contamination of Nanoparticles and Its Manifestation in Optical Absorbance Measurements. Analytical Chemistry, 2017, 89, 7282-7285.	3.2	2
53	Overlooked Ionic Phenomena Affecting the Electrical Conductivity of Liquid Crystals. Engineering Proceedings, 2021, 11, .	0.4	2
54	Novel holographic composites based on ionic smectic liquid crystals and glasses of metal alkanoates. Proceedings of SPIE, 2007, , .	0.8	1

Yuriy Garbovskiy

#	Article	IF	CITATIONS
55	Novel materials based on metal-alkanoate liquid crystals and smectic glasses for impulse dynamic holographic applications. , 2008, , .		1
56	Ion-Generating and Ion-Capturing Nanomaterials in Liquid Crystals. Proceedings (mdpi), 2018, 2, 1122.	0.2	1
57	Electrically controlled birefringence: Tuning the threshold voltage of liquid crystal cells. , 2018, , .		1
58	Electro-optics of liquid crystal cells utilizing weakly conducting polymers as electrodes and alignment layers. , 2019, , .		1
59	Steady-State and Transient Electrical Properties of Liquid Crystal Cells. , 0, , .		1
60	Nonlinear optical response of smectic structure glasses based on cobalt alkanoates. , 2010, , .		0
61	Nonlinear optical materials based on ionic liquid crystals and anisotropic glasses of metal alkanoate. , 2011, , .		0
62	Ultra-fast PDLC optical gate. Proceedings of SPIE, 2013, , .	0.8	0
63	Enhanced optical nonlinearity of the glassy composites based on of the cobalt octanoate and noble metal nanoparticles at the off-resonance excitation. , 2016, , .		0
64	Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials. , 2016, , .		0
65	Encapsulated Liquid Crystals Doped with Nanoparticles. , 2018, , .		0
66	Electro-Optics of Liquid Crystals Enabled by Ferroelectric Nanoparticles: Inverse Guest-Host Effect. , 2021, , .		0
67	Fast nonlinear optical materials based on ionic liquid crystals and glasses of metal alkanoates. , 2010, ,		0
68	Ferroelectric Nanoparticles Tailored for Electro-optical and Nano-imaging Applications. , 2016, , .		0
69	Preparation, Electro-Optics, and Applications of Stressed Liquid Crystals. , 2017, , .		0
70	Electro-Optical Performance of Liquid Crystal Materials Modified by Ions and Nanoparticles. , 2021, , .		0
71	Electro-Optical Properties of Liquid Crystal Cells Enabled by Unconventional Alignment Layers. , 2020,		0