Hanna M Oksanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8640041/publications.pdf

Version: 2024-02-01

172457 197818 2,865 82 29 49 citations h-index g-index papers 89 89 89 2466 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Differentiating between viruses and virus species by writing their names correctly. Archives of Virology, 2022, 167, 1231-1234.	2.1	33
2	Inline-tandem purification of viruses from cell lysate by agarose-based chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1192, 123140.	2.3	1
3	Virus-Host Interactions and Genetic Diversity of Antarctic Sea Ice Bacteriophages. MBio, 2022, 13, e0065122.	4.1	8
4	The Viral Susceptibility of the Haloferax Species. Viruses, 2022, 14, 1344.	3.3	4
5	Membrane-Containing Icosahedral DNA Bacteriophages. , 2021, , 36-44.		O
6	Isolating, Culturing, and Purifying Viruses With a Focus on Bacterial and Archaeal Viruses. , 2021, , 162-174.		0
7	Euryarchaeal Viruses., 2021,, 368-379.		0
8	Cellular and Genomic Properties of Haloferax gibbonsii LR2-5, the Host of Euryarchaeal Virus HFTV1. Frontiers in Microbiology, 2021, 12, 625599.	3 . 5	9
9	Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 2021, 166, 2633-2648.	2.1	219
10	Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. Archives of Virology, 2021, 166, 3239-3244.	2.1	24
11	Sample carryover and cleaning procedures for asymmetrical flow field-flow fractionation instrument. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1181, 122920.	2.3	5
12	Black box of phage–bacterium interactions: exploring alternative phage infection strategies. Open Biology, 2021, 11, 210188.	3.6	47
13	Growth Phase Dependent Cell Shape of Haloarcula. Microorganisms, 2021, 9, 231.	3.6	7
14	Bacteriophage PRD1 as a nanoscaffold for drug loading. Nanoscale, 2021, 13, 19875-19883.	5.6	3
15	Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biology, 2021, 19, e3001442.	5.6	44
16	Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Systematic Biology, 2020, 69, 110-123.	5.6	89
17	Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2020, 165, 1253-1260.	2.1	144
18	Pleomorphic archaeal viruses: the family Pleolipoviridae is expanding by seven new species. Archives of Virology, 2020, 165, 2723-2731.	2.1	21

#	Article	IF	CITATIONS
19	ICTV Virus Taxonomy Profile: Finnlakeviridae. Journal of General Virology, 2020, 101, 894-895.	2.9	9
20	Membrane-Containing Icosahedral Bacteriophage PRD1: The Dawn of Viral Lineages. Advances in Experimental Medicine and Biology, 2019, 1215, 85-109.	1.6	9
21	Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses, 2019, 11, 76.	3.3	40
22	Novel haloarchaeal viruses from Lake Retba infecting <i>Haloferax</i> and <i>Halorubrum</i> species. Environmental Microbiology, 2019, 21, 2129-2147.	3.8	28
23	Structural basis for assembly of vertical single β-barrel viruses. Nature Communications, 2019, 10, 1184.	12.8	25
24	Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications. Microorganisms, 2019, 7, 555.	3.6	30
25	The first known virus isolates from Antarctic sea ice have complex infection patterns. FEMS Microbiology Ecology, 2018, 94, .	2.7	20
26	Membrane-containing virus particles exhibit the mechanics of a composite material for genome protection. Nanoscale, 2018, 10, 7769-7779.	5.6	12
27	Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2018, 163, 1125-1129.	2.1	172
28	Genome Sequence of PM2-Like Phage Cr39582, Induced from a Pseudoalteromonas sp. Isolated from the Gut of Ciona robusta. Genome Announcements, $2018, 6, .$	0.8	10
29	The Unexplored Diversity of Pleolipoviruses: The Surprising Case of Two Viruses with Identical Major Structural Modules. Genes, 2018, 9, 131.	2.4	8
30	Asymmetrical flow field-flow fractionation in purification of an enveloped bacteriophage \(\bar{\psi}\)-6. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1095, 251-257.	2.3	8
31	Extremely halophilic pleomorphic archaeal virus HRPV9 extends the diversity of pleolipoviruses with integrases. Research in Microbiology, 2018, 169, 500-504.	2.1	13
32	Membrane-assisted viral DNA ejection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 664-672.	2.4	15
33	Halophilic viruses with varying biochemical and biophysical properties are amenable to purification with asymmetrical flow field-flow fractionation. Extremophiles, 2017, 21, 1119-1132.	2.3	10
34	Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2017, 162, 1153-1157.	2.1	57
35	HCIV-1 and Other Tailless Icosahedral Internal Membrane-Containing Viruses of the Family Sphaerolipoviridae. Viruses, 2017, 9, 32.	3.3	24
36	ICTV Virus Taxonomy Profile: Corticoviridae. Journal of General Virology, 2017, 98, 888-889.	2.9	20

#	Article	IF	Citations
37	ICTV Virus Taxonomy Profile: Pleolipoviridae. Journal of General Virology, 2017, 98, 2916-2917.	2.9	19
38	Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release. Viruses, 2016, 8, 59.	3.3	16
39	The complete genome of a viable archaeum isolated from 123â€millionâ€yearâ€old rock salt. Environmental Microbiology, 2016, 18, 565-579.	3.8	31
40	Virusâ€host interplay in high salt environments. Environmental Microbiology Reports, 2016, 8, 431-444.	2.4	21
41	Archaeal <i>Haloarcula californiae </i> lcosahedral Virus 1 Highlights Conserved Elements in Icosahedral Membrane-Containing DNA Viruses from Extreme Environments. MBio, 2016, 7, .	4.1	16
42	Asymmetric flow field flow fractionation methods for virus purification. Journal of Chromatography A, 2016, 1469, 108-119.	3.7	23
43	Vesicle-like virion of Haloarcula hispanica pleomorphic virus 3 preserves high infectivity in saturated salt. Virology, 2016, 499, 40-51.	2.4	18
44	K2 killer toxin-induced physiological changes in the yeast <i>Saccharomyces cerevisiae</i> Research, 2016, 16, fow003.	2.3	23
45	Buried Alive: Microbes from Ancient Halite. Trends in Microbiology, 2016, 24, 148-160.	7.7	50
46	Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes. Archives of Virology, 2016, 161, 249-256.	2.1	41
47	Identification and characterization of <scp>SNJ</scp> 2, the first temperate pleolipovirus integrating into the genome of the <scp>SNJ</scp> 1â&ysogenic archaeal strain. Molecular Microbiology, 2015, 98, 1002-1020.	2.5	36
48	Comparison of Lipid-Containing Bacterial and Archaeal Viruses. Advances in Virus Research, 2015, 92, 1-61.	2.1	25
49	Haloarchaeal virus morphotypes. Biochimie, 2015, 118, 333-343.	2.6	25
50	Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern. Viruses, 2015, 7, 1902-1926.	3.3	32
51	Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1. Virology, 2015, 482, 225-233.	2.4	0
52	Haloviruses of archaea, bacteria, and eukaryotes. Current Opinion in Microbiology, 2015, 25, 40-48.	5.1	33
53	Insight into the Assembly of Viruses with Vertical Single \hat{l}^2 -barrel Major Capsid Proteins. Structure, 2015, 23, 1866-1877.	3.3	29
54	Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids. Journal of Virology, 2015, 89, 11681-11691.	3.4	54

#	Article	IF	CITATIONS
55	Probing protein interactions in the membrane-containing virus PRD1. Journal of General Virology, 2015, 96, 453-462.	2.9	5
56	A Structural Model of the Genome Packaging Process in a Membrane-Containing Double Stranded DNA Virus. PLoS Biology, 2014, 12, e1002024.	5 . 6	41
57	Archaeal viruses and bacteriophages: comparisons and contrasts. Trends in Microbiology, 2014, 22, 334-344.	7.7	91
58	Subcellular localization of bacteriophage PRD1 proteins in Escherichia coli. Virus Research, 2014, 179, 44-52.	2,2	1
59	Seeing the Portal in Membrane-containing Bacteriophage PRD1 by Cryo-EM. Microscopy and Microanalysis, 2014, 20, 1250-1251.	0.4	0
60	Halophilic Archaea Cultivated from Surface Sterilized Middle-Late Eocene Rock Salt Are Polyploid. PLoS ONE, 2014, 9, e110533.	2.5	34
61	Modified coat protein forms the flexible spindleâ€shaped virion of haloarchaeal virus <scp>H</scp> is1. Environmental Microbiology, 2013, 15, 1674-1686.	3.8	46
62	Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. MicrobiologyOpen, 2013, 2, 811-825.	3.0	48
63	Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery. PLoS Biology, 2013, 11, e1001667.	5 . 6	75
64	Snapshot of haloarchaeal tailed virus genomes. RNA Biology, 2013, 10, 803-816.	3.1	51
65	Combined Approaches to Study Virus Structures. Sub-Cellular Biochemistry, 2013, 68, 203-246.	2.4	3
66	Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea. Journal of Virology, 2012, 86, 5067-5079.	3.4	78
67	Closely Related Archaeal Haloarcula hispanica Icosahedral Viruses HHIV-2 and SH1 Have Nonhomologous Genes Encoding Host Recognition Functions. Journal of Virology, 2012, 86, 4734-4742.	3.4	48
68	Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing <i>Salisaeta</i> icosahedral phage 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7079-7084.	7.1	42
69	Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea. Journal of Virology, 2012, 86, 6384-6384.	3.4	2
70	Monolithic ion exchange chromatographic methods for virus purification. Virology, 2012, 434, 271-277.	2.4	40
71	Virus Universe: Can It Be Constructed from a Limited Number of Viral Architectures. , 2012, , 83-105.		7
72	Global network of specific virus–host interactions in hypersaline environments. Environmental Microbiology, 2012, 14, 426-440.	3.8	147

#	Article	lF	CITATION
73	The use of low-resolution phasing followed by phase extension from 7.6 to 2.5â€Ã resolution with noncrystallographic symmetry to solve the structure of a bacteriophage capsid protein. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 228-232.	2.5	6
74	Viruses from the Hypersaline Environment. , 2011, , 153-172.		15
75	Purified Membrane-Containing Procapsids of Bacteriophage PRD1 Package the Viral Genome. Journal of Molecular Biology, 2009, 386, 637-647.	4.2	19
76	Insights into Virus Evolution and Membrane Biogenesis from the Structure of the Marine Lipid-Containing Bacteriophage PM2. Molecular Cell, 2008, 31, 749-761.	9.7	116
77	Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8008-8013.	7.1	78
78	Genetics for Pseudoalteromonas Provides Tools To Manipulate Marine Bacterial Virus PM2. Journal of Bacteriology, 2008, 190, 1298-1307.	2.2	17
79	Genome Characterization of Lipid-Containing Marine Bacteriophage PM2 by Transposon Insertion Mutagenesis. Journal of Virology, 2006, 80, 9270-9278.	3.4	25
80	Penetration of Membrane-Containing Double-Stranded-DNA Bacteriophage PM2 into Pseudoalteromonas Hosts. Journal of Bacteriology, 2004, 186, 5342-5354.	2.2	40
81	The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nature Structural and Molecular Biology, 2004, 11, 850-856.	8.2	60
82	Bacteriophage PM2 Has a Protein Capsid Surrounding a Spherical Proteinaceous Lipid Core. Journal of Virology, 2002, 76, 8169-8178.	3 . 4	44