Philippe Schwaller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8639473/publications.pdf

Version: 2024-02-01

50

all docs

19 3,066 15
papers citations h-index

50

docs citations

h-index g-index

50 3899
times ranked citing authors

839398

18

#	Article	IF	CITATIONS
1	Reaction classification and yield prediction using the differential reaction fingerprint DRFP. , 2022, 1, 91-97.		45
2	Machine intelligence for chemical reaction space. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	30
3	Predicting enzymatic reactions with a molecular transformer. Chemical Science, 2021, 12, 8648-8659.	3.7	43
4	Prediction of chemical reaction yields using deep learning. Machine Learning: Science and Technology, 2021, 2, 015016.	2.4	106
5	Unassisted noise reduction of chemical reaction datasets. Nature Machine Intelligence, 2021, 3, 485-494.	8.3	24
6	Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Science Advances, 2021, 7, .	4.7	98
7	Inferring experimental procedures from text-based representations of chemical reactions. Nature Communications, 2021, 12, 2573.	5.8	28
8	How Al for Synthesis Can Help Tackle Challenges in Molecular Discovery. Chimia, 2021, 75, 677-678.	0.3	2
9	Mapping the space of chemical reactions using attention-based neural networks. Nature Machine Intelligence, 2021, 3, 144-152.	8. 3	121
10	Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates. Nature Communications, 2020, 11, 4874.	5.8	107
11	Automated extraction of chemical synthesis actions from experimental procedures. Nature Communications, 2020, 11, 3601.	5 . 8	89
12	Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discovery Today, 2020, 25, 689-705.	3.2	68
13	Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chemical Science, 2020, 11, 3316-3325.	3.7	176
14	Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Central Science, 2019, 5, 1572-1583.	5. 3	424
15	Data-driven Chemical Reaction Prediction and Retrosynthesis. Chimia, 2019, 73, 997.	0.3	19
16	Data-Driven Learning Systems for Chemical Reaction Prediction: An Analysis of Recent Approaches. ACS Symposium Series, 2019, , 61-79.	0.5	11
17	Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nature Nanotechnology, 2018, 13, 246-252.	15.6	1,317
18	Insights into photovoltaic properties of ternary organic solar cells from phase diagrams. Science and Technology of Advanced Materials, 2018, 19, 669-682.	2.8	13

#	Article	IF	CITATIONS
19	"Found in Translation― predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. Chemical Science, 2018, 9, 6091-6098.	3.7	269