
James B Elsner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unusually Devastating Tornadoes in the United States: 1995–2016. Annals of the American Association of Geographers, 2020, 110, 724-738.	2.2	12
2	More hots: Quantifying upward trends in the number of extremely hot days and nights in Tallahassee, Florida, USA: 1892–2018. International Journal of Climatology, 2020, 40, 1931-1942.	3.5	3
3	Quantifying relationships between environmental factors and power dissipation on the most prolific days in the largest tornado "outbreaks― International Journal of Climatology, 2020, 40, 3150-3160.	3.5	6
4	Continued Increases in the Intensity of Strong Tropical Cyclones. Bulletin of the American Meteorological Society, 2020, 101, E1301-E1303.	3.3	17
5	Influence of global warming on the rapid intensification of western North Pacific tropical cyclones. Environmental Research Letters, 2019, 14, 044027.	5.2	23
6	Extracting weather information from a plantation document. Climate of the Past, 2019, 15, 477-492.	3.4	1
7	The contribution of super typhoons to tropical cyclone activity in response to ENSO. Scientific Reports, 2019, 9, 5046.	3.3	14
8	Increasingly Powerful Tornadoes in the United States. Geophysical Research Letters, 2019, 46, 392-398.	4.0	29
9	Tornado Damage Ratings Estimated with Cumulative Logistic Regression. Journal of Applied Meteorology and Climatology, 2019, 58, 2733-2741.	1.5	6
10	Structural Property Losses from Tornadoes in Florida. Weather, Climate, and Society, 2018, 10, 253-258.	1.1	4
11	Influence of Global Warming on Western North Pacific Tropical Cyclone Intensities during 2015. Journal of Climate, 2018, 31, 919-925.	3.2	14
12	The changing validity of tropical cyclone warnings under global warming. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	5
13	A Model for U.S. Tornado Casualties Involving Interaction between Damage Path Estimates of Population Density and Energy Dissipation. Journal of Applied Meteorology and Climatology, 2018, 57, 2035-2046.	1.5	20
14	Public perception of climatological tornado risk in Tennessee, USA. International Journal of Biometeorology, 2018, 62, 1557-1566.	3.0	12
15	Population and energy elasticity of tornado casualties. Geophysical Research Letters, 2017, 44, 3941-3949.	4.0	35
16	A Bayesian geostatistical approach to modeling global distributions of Lygodium microphyllum under projected climate warming. Ecological Modelling, 2017, 363, 192-206.	2.5	16
17	Disaggregating the Patchwork:. Wetlands, 2017, 37, 205-219.	1.5	2
18	A dasymetric method to spatially apportion tornado casualty counts. Geomatics, Natural Hazards and Risk, 2017, 8, 1768-1782.	4.3	18

#	Article	IF	CITATIONS
19	Statistical Models for Tornado Climatology: Long and Short-Term Views. PLoS ONE, 2016, 11, e0166895.	2.5	24
20	Graphical Inference in Geographical Research. Geographical Analysis, 2016, 48, 115-131.	3.5	4
21	Bayesian Updating of Track-Forecast Uncertainty for Tropical Cyclones. Weather and Forecasting, 2016, 31, 621-626.	1.4	2
22	Climate Mechanism for Stronger Typhoons in a Warmer World*. Journal of Climate, 2016, 29, 1051-1057.	3.2	38
23	The Relationship between Elevation Roughness and Tornado Activity: A Spatial Statistical Model Fit to Data from the Central Great Plains. Journal of Applied Meteorology and Climatology, 2016, 55, 849-859.	1.5	14
24	Statistical models for predicting tornado rates: Case studies from Oklahoma and the Mid South USA. International Journal of Safety and Security Engineering, 2016, 6, 1-9.	1.0	5
25	A space–time statistical climate model for hurricane intensification in the North Atlantic basin. Advances in Statistical Climatology, Meteorology and Oceanography, 2016, 2, 105-114.	0.9	3
26	Kinetic Energy of Tornadoes in the United States. PLoS ONE, 2015, 10, e0131090.	2.5	11
27	A Statistical Model for Regional Tornado Climate Studies. PLoS ONE, 2015, 10, e0131876.	2.5	18
28	Trade-off between intensity and frequency of global tropical cyclones. Nature Climate Change, 2015, 5, 661-664.	18.8	67
29	A climatological study of the effect of sea-surface temperature on North Atlantic hurricane intensification. Physical Geography, 2015, 36, 395-407.	1.4	7
30	New Methods in Tornado Climatology. Geography Compass, 2015, 9, 157-168.	2.7	6
31	The increasing efficiency of tornado days in the United States. Climate Dynamics, 2015, 45, 651-659.	3.8	80
32	Tornado Intensity Estimated from Damage Path Dimensions. PLoS ONE, 2014, 9, e107571.	2.5	21
33	Predicting Spring Tornado Activity in the Central Great Plains by 1 March. Monthly Weather Review, 2014, 142, 259-267.	1.4	46
34	A spatial climatology of North Atlantic hurricane intensity change. International Journal of Climatology, 2014, 34, 2918-2924.	3.5	8
35	The sun-hurricane connection: Diagnosing the solar impacts on hurricane frequency over the North Atlantic basin using a space–time model. Natural Hazards, 2014, 73, 1063-1084.	3.4	10
36	A Spatial Point Process Model for Violent Tornado Occurrence in the US Great Plains. Mathematical Geosciences, 2013, 45, 667-679.	2.4	13

#	Article	IF	CITATIONS
37	Enhanced cloudâ€ŧoâ€ground lightning frequency in the vicinity of coal plants and highways in Northern Georgia, <scp>USA</scp> . Atmospheric Science Letters, 2013, 14, 243-248.	1.9	5
38	Sensitivity of Limiting Hurricane Intensity to SST in the Atlantic from Observations and GCMs. Journal of Climate, 2013, 26, 5949-5957.	3.2	15
39	Observed versus GCM-Generated Local Tropical Cyclone Frequency: Comparisons Using a Spatial Lattice. Journal of Climate, 2013, 26, 8257-8268.	3.2	24
40	Frequency, intensity, and sensitivity to sea surface temperature of North Atlantic tropical cyclones in bestâ€ŧrack and simulated data. Journal of Advances in Modeling Earth Systems, 2013, 5, 500-509.	3.8	16
41	The Decreasing Population Bias in Tornado Reports across the Central Plains. Weather, Climate, and Society, 2013, 5, 221-232.	1.1	55
42	Hurricane Climatology. , 2013, , .		40
43	The Spatial Pattern of the Sun-Hurricane Connection across the North Atlantic. , 2012, 2012, 1-9.		8
44	Consensus on Climate Trends in Western North Pacific Tropical Cyclones. Journal of Climate, 2012, 25, 7564-7573.	3.2	38
45	An empirical framework for tropical cyclone climatology. Climate Dynamics, 2012, 39, 669-680.	3.8	11
46	Spatial grids for hurricane climate research. Climate Dynamics, 2012, 39, 21-36.	3.8	31
47	Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida. PLoS ONE, 2011, 6, e15683.	2.5	27
48	Climate and solar signals in property damage losses from hurricanes affecting the United States. Natural Hazards, 2011, 58, 541-557.	3.4	16
49	Risk assessment of hurricane winds for Eglin air force base in northwestern Florida, USA. Theoretical and Applied Climatology, 2011, 105, 287-296.	2.8	14
50	Evidence linking solar variability with US hurricanes. International Journal of Climatology, 2011, 31, 1897-1907.	3.5	16
51	Estimating Contemporary and Future Wind-Damage Losses from Hurricanes Affecting Eglin Air Force Base, Florida. Journal of Applied Meteorology and Climatology, 2011, 50, 1514-1526.	1.5	6
52	Discussion on "Public Hurricane Loss Evaluation Models: Predicting losses of residential structures in the state of Florida―by S. Hamid etÂal Statistical Methodology, 2010, 7, 574-576.	0.5	0
53	A Consensus Model for Seasonal Hurricane Prediction. Journal of Climate, 2010, 23, 6090-6099.	3.2	14
54	Risk of Strong Hurricane Winds to Florida Cities. Journal of Applied Meteorology and Climatology, 2010, 49, 2121-2132.	1.5	43

#	Article	IF	CITATIONS
55	Toward increased utilization of historical hurricane chronologies. Journal of Geophysical Research, 2010, 115, .	3.3	20
56	On the Increasing Intensity of the Strongest Atlantic Hurricanes. , 2010, , 175-190.		5
57	Frequency and Intensity of Hurricanes Within Florida's Threat Zone. , 2010, , 191-203.		1
58	A Track-Relative Climatology of Eglin Air Force Base Hurricanes in a Variable Climate. , 2010, , 217-229.		4
59	Environmental Signals in Property Damage Losses from Hurricanes. , 2010, , 101-119.		Ο
60	Modeling tropical cyclone intensity with quantile regression. International Journal of Climatology, 2009, 29, 1351-1361.	3.5	43
61	Catastrophe Finance: An Emerging Discipline. Eos, 2009, 90, 281-282.	0.1	7
62	Statistical Link Between United States Tropical Cyclone Activity and the Solar Cycle. , 2009, , 61-71.		0
63	The increasing intensity of the strongest tropical cyclones. Nature, 2008, 455, 92-95.	27.8	923
64	Improving Multiseason Forecasts of North Atlantic Hurricane Activity. Journal of Climate, 2008, 21, 1209-1219.	3.2	23
65	Comparison of Hurricane Return Levels Using Historical and Geological Records. Journal of Applied Meteorology and Climatology, 2008, 47, 368-374.	1.5	53
66	Forecasting US insured hurricane losses. , 2008, , 189-208.		22
67	Granger causality and Atlantic hurricanes. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 476-485.	1.7	49
68	Tempests in time. Nature, 2007, 447, 647-649.	27.8	15
69	Evidence in support of the climate change–Atlantic hurricane hypothesis. Geophysical Research Letters, 2006, 33, .	4.0	96
70	Climatology Models for Extreme Hurricane Winds near the United States. Journal of Climate, 2006, 19, 3220-3236.	3.2	153
71	Prediction Models for Annual U.S. Hurricane Counts. Journal of Climate, 2006, 19, 2935-2952.	3.2	144
72	Comparison of Hindcasts Anticipating the 2004 Florida Hurricane Season. Weather and Forecasting, 2006, 21, 182-192.	1.4	9

#	Article	IF	CITATIONS
73	Variations in typhoon landfalls over China. Advances in Atmospheric Sciences, 2006, 23, 665-677.	4.3	27
74	Detecting Shifts in Hurricane Rates Using a Markov Chain Monte Carlo Approach. Journal of Climate, 2004, 17, 2652-2666.	3.2	80
75	A Hierarchical Bayesian Approach to Seasonal Hurricane Modeling. Journal of Climate, 2004, 17, 2813-2827.	3.2	99
76	Seasonal Space–Time Models for Climate Systems. Statistical Inference for Stochastic Processes, 2003, 6, 111-133.	0.6	5
77	Tracking Hurricanes. Bulletin of the American Meteorological Society, 2003, 84, 353-356.	3.3	167
78	A space-time model for seasonal hurricane prediction. International Journal of Climatology, 2002, 22, 451-465.	3.5	34
79	Reply to "Comment on changes in the rates of North Atlantic major hurricane activity during the 20th century― Geophysical Research Letters, 2001, 28, 2873-2874.	4.0	0
80	Secular changes to the ENSO-U.S. hurricane relationship. Geophysical Research Letters, 2001, 28, 4123-4126.	4.0	86
81	A Dynamic Probability Model of Hurricane Winds in Coastal Counties of the United States. Journal of Applied Meteorology and Climatology, 2001, 40, 853-863.	1.7	55
82	Rayleigh-Bénard convection as a tool for studying dust devils. Atmospheric Science Letters, 2001, 2, 104-113.	1.9	17
83	Global tropical cyclone activity: A link to the North Atlantic Oscillation. Geophysical Research Letters, 2000, 27, 129-132.	4.0	75
84	Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophysical Research Letters, 2000, 27, 1743-1746.	4.0	124
85	Physical Mechanism for the Tallahassee, Florida, Minimum Temperature Anomaly. Journal of Applied Meteorology and Climatology, 1998, 37, 101-113.	1.7	4