
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8639216/publications.pdf Version: 2024-02-01

CHOZHENC OIN

#	Article	IF	CITATIONS
1	Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology, 2013, 82, 593-602.	3.9	281
2	Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant Journal, 2012, 70, 243-255.	5.7	178
3	Proteome Approach To Characterize Proteins Induced by Antagonist Yeast and Salicylic Acid in Peach Fruit. Journal of Proteome Research, 2007, 6, 1677-1688.	3.7	177
4	RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biology, 2019, 20, 156.	8.8	174
5	Oxidative Damage of Mitochondrial Proteins Contributes to Fruit Senescence: A Redox Proteomics Analysis. Journal of Proteome Research, 2009, 8, 2449-2462.	3.7	152
6	Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in <i>Penicillium</i> Species. Molecular Plant-Microbe Interactions, 2015, 28, 635-647.	2.6	152
7	Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Applied Microbiology and Biotechnology, 2006, 70, 729-734.	3.6	149
8	A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening. Plant Physiology, 2016, 172, 1596-1611.	4.8	141
9	Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 2010, 56, 50-55.	6.0	134
10	Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 2012, 43, 2469-2480.	2.7	120
11	Crucial Role of Antioxidant Proteins and Hydrolytic Enzymes in Pathogenicity of Penicillium expansum. Molecular and Cellular Proteomics, 2007, 6, 425-438.	3.8	119
12	Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International Journal of Food Microbiology, 2010, 138, 145-150.	4.7	119
13	Hydrogen Peroxide Acts on Sensitive Mitochondrial Proteins to Induce Death of a Fungal Pathogen Revealed by Proteomic Analysis. PLoS ONE, 2011, 6, e21945.	2.5	94
14	The <i>RIN-MC</i> Fusion of MADS-Box Transcription Factors Has Transcriptional Activity and Modulates Expression of Many Ripening Genes. Plant Physiology, 2018, 176, 891-909.	4.8	94
15	Effects of 1-methylcyclopropene(1-MCP) on ripening and resistance of jujube (Zizyphus jujuba cv.) Tj ETQq1 1 0	.784314 r	gBT_{Overlock
16	Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biology and Technology, 2011, 62, 127-132.	6.0	92
17	Exploring Pathogenic Mechanisms of <i>Botrytis cinerea</i> Secretome under Different Ambient pH Based on Comparative Proteomic Analysis. Journal of Proteome Research, 2012, 11, 4249-4260.	3.7	92
18	Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics, 2009, 9, 4241-4253.	2.2	91

#	Article	IF	CITATIONS
19	Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biology, 2014, 15, 548.	8.8	91
20	Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit–Pathogen Interactions. International Journal of Molecular Sciences, 2019, 20, 2994.	4.1	90
21	Functions of defenseâ€related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics, 2008, 8, 4791-4807.	2.2	87
22	Response of Jujube Fruits to Exogenous Oxalic Acid Treatment Based on Proteomic Analysis. Plant and Cell Physiology, 2009, 50, 230-242.	3.1	87
23	Micro <scp>RNA</scp> profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of <scp>RIN</scp> on micro <scp>RNA</scp> s accumulation. Plant Biotechnology Journal, 2015, 13, 370-382.	8.3	87
24	Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in <i>Botrytis cinerea</i> . New Phytologist, 2016, 209, 1668-1680.	7.3	84
25	Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids, 2010, 39, 181-194.	2.7	82
26	Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control, 2014, 41, 56-62.	5.5	81
27	Knocking Out <i>Bcsas1</i> in <i>Botrytis cinerea</i> Impacts Growth, Development, and Secretion of Extracellular Proteins, Which Decreases Virulence. Molecular Plant-Microbe Interactions, 2014, 27, 590-600.	2.6	81
28	Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions. Postharvest Biology and Technology, 2004, 31, 51-58.	6.0	79
29	Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. International Journal of Food Microbiology, 2008, 126, 153-158.	4.7	78
30	Ambient pH Stress Inhibits Spore Germination of <i>Penicillium expansum</i> by Impairing Protein Synthesis and Folding: A Proteomic-Based Study. Journal of Proteome Research, 2010, 9, 298-307.	3.7	78
31	Regulatory network of fruit ripening: current understanding and future challenges. New Phytologist, 2020, 228, 1219-1226.	7.3	75
32	N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22, 168.	8.8	72
33	Plasma Membrane Damage Contributes to Antifungal Activity of Silicon Against Penicillium digitatum. Current Microbiology, 2010, 61, 274-279.	2.2	69
34	Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biology and Technology, 2016, 117, 57-63.	6.0	67
35	Molecular basis and regulation of pathogenicity and patulin biosynthesis in <i>Penicillium expansum</i> . Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3416-3438.	11.7	66
36	Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit. Postharvest Biology and Technology, 2016, 111, 15-24.	6.0	63

#	Article	IF	CITATIONS
37	Survival of antagonistic yeasts under field conditions and their biocontrol ability against postharvest diseases of sweet cherry. Postharvest Biology and Technology, 2004, 33, 327-331.	6.0	56
38	Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action. Current Microbiology, 2015, 71, 396-402.	2.2	55
39	The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Scientific Reports, 2016, 6, 33901.	3.3	53
40	Synergistic Effects of Combining Biocontrol Agents with Silicon against Postharvest Diseases of Jujube Fruit. Journal of Food Protection, 2005, 68, 544-550.	1.7	52
41	Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SIVPE3. Genome Biology, 2017, 18, 47.	8.8	51
42	Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit. Postharvest Biology and Technology, 2019, 149, 42-49.	6.0	51
43	Advances and Strategies for Controlling the Quality and Safety of Postharvest Fruit. Engineering, 2021, 7, 1177-1184.	6.7	51
44	Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biological Control, 2010, 54, 316-321.	3.0	48
45	Oxidative Damage Involves in the Inhibitory Effect of Nitric Oxide on Spore Germination of Penicillium expansum. Current Microbiology, 2011, 62, 229-234.	2.2	46
46	Comparative Proteomics Reveals the Potential Targets of BcNoxR, a Putative Regulatory Subunit of NADPH Oxidase of <i>Botrytis cinerea</i> . Molecular Plant-Microbe Interactions, 2016, 29, 990-1003.	2.6	46
47	Actin Is Required for Cellular Development and Virulence of <i>Botrytis cinerea</i> via the Mediation of Secretory Proteins. MSystems, 2020, 5, .	3.8	46
48	Control of brown rot on jujube and peach fruits by trisodium phosphate. Postharvest Biology and Technology, 2015, 99, 93-98.	6.0	42
49	The transcription factor SIHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Horticulture Research, 2021, 8, 83.	6.3	42
50	Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 2019, 150, 158-165.	6.0	41
51	Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biology and Technology, 2012, 68, 16-21.	6.0	40
52	Exogenous Calcium Improves Viability of Biocontrol Yeasts Under Heat Stress by Reducing ROS Accumulation and Oxidative Damage of Cellular Protein. Current Microbiology, 2012, 65, 122-127.	2.2	36
53	Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. Fungal Genetics and Biology, 2015, 75, 46-55.	2.1	35
54	SIREM1 Triggers Cell Death by Activating an Oxidative Burst and Other Regulators. Plant Physiology, 2020, 183, 717-732.	4.8	34

#	Article	IF	CITATIONS
55	Mechanism of H2O2-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis. International Journal of Food Microbiology, 2015, 193, 152-158.	4.7	32
56	m ⁶ Aâ€mediated regulation of crop development and stress responses. Plant Biotechnology Journal, 2022, 20, 1447-1455.	8.3	31
57	The mode of action of remorin1 in regulating fruit ripening at transcriptional and postâ€transcriptional levels. New Phytologist, 2018, 219, 1406-1420.	7.3	30
58	Metabolic Dynamics During Loquat Fruit Ripening and Postharvest Technologies. Frontiers in Plant Science, 2019, 10, 619.	3.6	30
59	Modulation of the Regulatory Activity of Bacterial Two-component Systems by SlyA. Journal of Biological Chemistry, 2008, 283, 28158-28168.	3.4	29
60	Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Horticulture Research, 2022, 9, uhac066.	6.3	29
61	Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato. Communications Biology, 2020, 3, 730.	4.4	26
62	Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH, 2021, 2, 330-340.	3.9	25
63	Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis. Journal of Proteomics, 2014, 103, 47-56.	2.4	24
64	Ca2+–CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins. Journal of Proteomics, 2014, 109, 38-49.	2.4	23
65	iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. Journal of Proteomics, 2016, 146, 80-89.	2.4	23
66	Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period. Frontiers in Plant Science, 2017, 8, 341.	3.6	23
67	NADPH Oxidase Is Crucial for the Cellular Redox Homeostasis in Fungal Pathogen <i>Botrytis cinerea</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1508-1516.	2.6	20
68	SIFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening. Plant Physiology, 2020, 184, 2168-2181.	4.8	19
69	Oxidative Stress Acts on Special Membrane Proteins To Reduce the Viability of <i>Pseudomonas syringae</i> pv <i>tomato</i> . Journal of Proteome Research, 2012, 11, 4927-4938.	3.7	18
70	Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum). Frontiers in Plant Science, 2017, 8, 186.	3.6	12
71	Quantitative proteomic analysis reveals the involvement of mitochondrial proteins in tomato fruit ripening. Postharvest Biology and Technology, 2018, 145, 213-221.	6.0	12
72	Redox proteomic analysis reveals the involvement of oxidative post-translational modification in tomato fruit ripening. Postharvest Biology and Technology, 2021, 178, 111556.	6.0	10

#	Article	IF	CITATIONS
73	The role of 1-methylcyclopropene in lipid peroxidation, anti-oxidant enzyme activities, and ethylene biosynthesis in â€Laiyang' pear (<i>Pyrus bretschneideri</i> Rehd.) during fruit ripening. Journal of Horticultural Science and Biotechnology, 2015, 90, 210-216.	1.9	6
74	Genome-wide binding analysis of the tomato transcription factor SlDof1 reveals its regulatory impacts on fruit ripening. Molecular Horticulture, 2021, 1, .	5.8	6