
Farhad Khormali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863920/publications.pdf Version: 2024-02-01

Ελαμλη Κησαμλιι

#	Article	IF	CITATIONS
1	Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agriculture, Ecosystems and Environment, 2009, 134, 178-189.	2.5	130
2	Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals, 2003, 38, 511-527.	0.2	123
3	Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, northern Iran. Geoderma, 2016, 281, 1-10.	2.3	97
4	Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 2014, 232-234, 97-106.	2.3	81
5	Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena, 2003, 53, 273-301.	2.2	72
6	Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quaternary International, 2011, 234, 109-123.	0.7	69
7	Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran. Geoderma, 2006, 132, 31-46.	2.3	68
8	Loess-soil sequence at Toshan (Northern Iran): Insights into late Pleistocene climate change. Quaternary International, 2016, 399, 122-135.	0.7	52
9	Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences. Scientific Reports, 2016, 6, 20560.	1.6	45
10	Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran. Journal of Applied Geophysics, 2016, 127, 23-30.	0.9	43
11	Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran. Geoderma, 2012, 179-180, 113-122.	2.3	40
12	Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma, 2016, 279, 141-148.	2.3	39
13	Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia – Detailed insights from the loess profile Toshan (NE Iran). Quaternary Science Reviews, 2018, 180, 75-95.	1.4	38
14	Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quaternary International, 2017, 429, 41-51.	0.7	35
15	Accuracy Assessment of Landform Classification Approaches on Different Spatial Scales for the Iranian Loess Plateau. ISPRS International Journal of Geo-Information, 2017, 6, 366.	1.4	34
16	Effect of the accuracy of topographic data on improving digital soil mapping predictions with limited soil data: An application to the Iranian loess plateau. Catena, 2020, 195, 104810.	2.2	30
17	Biological soil crusts determine soil properties and salt dynamics under arid climatic condition in Qara Qir, Iran. Science of the Total Environment, 2020, 732, 139168.	3.9	28
18	Pedogenetic investigation of soil degradation on a deforested loess hillslope of Golestan Province, Northern Iran. Geoderma, 2011, 167-168, 274-283.	2.3	26

FARHAD KHORMALI

#	Article	IF	CITATIONS
19	Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran. Quaternary Research, 2016, 86, 95-109.	1.0	25
20	Cyanobacterial diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. Quaternary International, 2017, 429, 74-85.	0.7	24
21	Clay transformation and pedogenic calcite formation on a lithosequence of igneous rocks in northwestern Iran. Catena, 2015, 133, 186-197.	2.2	22
22	Late Mesozoic—Cenozoic clay mineral successions of southern Iran and their palaeoclimatic implications. Clay Minerals, 2005, 40, 191-203.	0.2	21
23	Forms of K as a function of clay mineralogy and soil development. Clay Minerals, 2006, 41, 739-749.	0.2	20
24	GENESIS AND MORPHOLOGICAL CHARACTERISTICS OF MOLLISOLS FORMED IN A CATENA UNDER WATER TABLE INFLUENCE IN SOUTHERN IRAN. Communications in Soil Science and Plant Analysis, 2001, 32, 1643-1658.	0.6	19
25	Effect of canola rhizosphere and silicate dissolving bacteria on the weathering and K release from indigenous glauconite shale. Biology and Fertility of Soils, 2015, 51, 973-981.	2.3	19
26	Soil-parent material relationship in a mountainous arid area of Kopet Dagh basin, North East Iran. Catena, 2017, 152, 252-267.	2.2	19
27	Spatial Variability of Rainfed WheatÂProduction Under the Influence of Topography and Soil Properties in Loess-Derived Soils, Northern Iran. International Journal of Plant Production, 2020, 14, 597-608.	1.0	19
28	Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands - New insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quaternary Science Reviews, 2021, 253, 106774.	1.4	19
29	Relationships of barley biomass and grain yields to soil properties within a field in the arid region: Use of factor analysis. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2009, 59, 107-117.	0.3	18
30	Rhizosphere-induced weathering of minerals in loess-derived soils of Golestan Province, Iran. Geoderma Regional, 2015, 5, 34-43.	0.9	18
31	Climatic significance of the stable carbon isotopic composition of surface soils in northern Iran and its application to an Early Pleistocene loess section. Organic Geochemistry, 2019, 127, 104-114.	0.9	17
32	Quaternary sediment sources and loess transport pathways in the Black Sea - Caspian Sea region identified by detrital zircon U-Pb geochronology. Global and Planetary Change, 2022, 209, 103736.	1.6	16
33	Micromorphology of the lower Pleistocene loess in the Iranian Loess Plateau and its paleoclimatic implications. Quaternary International, 2017, 429, 31-40.	0.7	15
34	General Holocene warming trend in arid Central Asia indicated by soil isoprenoid tetraethers. Global and Planetary Change, 2022, 215, 103879.	1.6	15
35	Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran. Quaternary Research, 2016, 86, 95-109.	1.0	14
36	Timing and development of sand dunes in the Golestan Province, northern Iran—Implications for the Late-Pleistocene history of the Caspian Sea, Aeolian Research, 2019, 41, 100538	1.1	14

3

Farhad Khormali

#	Article	IF	CITATIONS
37	Base cation dynamics in rainfall, throughfall, litterflow and soil solution under Oriental beech (Fagus orientalis Lipsky) trees in northern Iran. Annals of Forest Science, 2019, 76, 1.	0.8	14
38	Holocene Moisture Variations in Western Arid Central Asia Inferred From Loess Records From NE Iran. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008616.	1.0	14
39	Effect of Soil Moisture Regime and Rice Cultivation on Mineralogical Characteristics of Paddy Soils of Mazandaran Province, Northern Iran, Amol. International Journal of Soil Science, 2008, 3, 138-148.	0.7	14
40	Mineralogy and Characteristics of Soils Developed on Persian Gulf and Oman Sea Basin, Southern Iran. Soil Science, 2013, 178, 568-584.	0.9	13
41	Biomarkers in modern and buried soils of semi-desert and forest ecosystems of northern Iran. Quaternary International, 2017, 429, 62-73.	0.7	12
42	Pedogenic carbonates archive modern and past precipitation change – A transect study from soils and loess-paleosol sequences from northern Iran. Quaternary International, 2020, 552, 79-90.	0.7	12
43	Biocrust islands enhance infiltration, and reduce runoff and sediment yield on a heavily salinized dryland soil. Geoderma, 2021, 404, 115329.	2.3	12
44	Spatial variability of soil organic carbon in different hillslope positions in Toshan area, Golestan Province, Iran: Geostatistical approaches. Journal of Mountain Science, 2015, 12, 1422-1433.	0.8	11
45	Weathering and soils formation on different parent materials in Golestan Province, Northern Iran. Journal of Mountain Science, 2016, 13, 870-881.	0.8	11
46	Major Soils, Properties, and Classification. World Soils Book Series, 2018, , 93-147.	0.1	11
47	Investigating soil magnetic properties with pedogenic variation along a precipitation gradient in loess-derived soils of the Golestan province, northern Iran. Quaternary International, 2020, 552, 100-110.	0.7	11
48	Effect of biocrusts on profile distribution of soil water content and salinity at different stages of evaporation. Journal of Arid Environments, 2021, 191, 104514.	1.2	11
49	Discrimination of sand dunes and loess deposits using grain-size analysis in northeastern Iran. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	10
50	Development and magnetic properties of loess-derived forest soils along a precipitation gradient in northern Iran. Journal of Mountain Science, 2019, 16, 1848-1868.	0.8	10
51	Micromorphology and quality attributes of the loess derived soils affected by land use change: A case study in Ghapan watershed, Northern Iran. Journal of Mountain Science, 2009, 6, 197-204.	0.8	9
52	Comparing the weathering of soil and sedimentary palygorskite in the rhizosphere zone. Applied Clay Science, 2011, 54, 235-241.	2.6	9
53	Clay mineralogy and geochemistry of the Lower Pleistocene Loess in the Iranian Loess Plateau (Agh) Tj ETQq1 2020, 552, 91-99.	1 0.784314 0.7	rgBT /Overloo 9
54	Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh, North East Iran. Journal of Geochemical Exploration, 2018, 194, 52-70.	1.5	8

FARHAD KHORMALI

#	Article	IF	CITATIONS
55	Constraining the timing of palaeosol development in Iranian arid environments using OSL dating. Quaternary Geochronology, 2019, 49, 92-100.	0.6	8
56	Hot desert soils—Global distribution and unique characteristics. Geoderma Regional, 2020, 23, e00330.	0.9	8
57	Evidence for signatures of ancient microbial life in paleosols. Scientific Reports, 2020, 10, 16830.	1.6	8
58	The impact of precipitation on the distributions of branched tetraethers in alkaline soils. Organic Geochemistry, 2022, 169, 104410.	0.9	8
59	Role of geomorphic surface on the above-ground biomass and soil organic carbon storage in a semi-arid region of Iranian loess plateau. Quaternary International, 2020, 552, 111-121.	0.7	7
60	Morphology and Micromorphology of Paddy Soils under Different Soil Moisture Regime and Ground Water Table in Mazandaran Province, Northern Iran, Amol. International Journal of Soil Science, 2008, 3, 149-156.	0.7	7
61	Clay mineralogy of the Jurassic-tertiary sedimentary rocks of the Kopet Dagh Basin (Northeastern) Tj ETQq1 1 (2015, , 387-398.).784314 rg 0.3	BT /Overlock 6
62	Experimental micropedology—A technique for investigating soil carbonate biogenesis along a desert-grassland-forest transect, New Mexico, USA Spanish Journal of Soil Science, 0, 4, .	0.0	6
63	Late Pleistocene Climate and Dust Source From the Mobarakabad Loess–Paleosol Sequence, Northern Foothills of the Alborz Mountains, Northern Iran. Frontiers in Earth Science, 2021, 9, .	0.8	6
64	Cadmium and lead immobilization in a calcareous contaminated soil using the cost-effective amendments. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	5
65	The formation of iron oxides and magnetic enhancement mechanisms in northern Iranian loess-paleosol sequences: Evidence from diffuse reflectance spectrophotometry and temperature dependence of magnetic susceptibility. Quaternary International, 2021, 589, 68-82.	0.7	5
66	Artificial Intelligence Statistical Analysis of Soil Respiration Improves Predictions Compared to Regression Methods. Journal of Soil Science and Plant Nutrition, 2021, 21, 2242-2251.	1.7	5
67	Effects of environmental factors on classification of loessderived soils and clay minerals variations, northern Iran. Journal of Mountain Science, 2018, 15, 976-991.	0.8	4
68	Paleopedology and magnetic properties of Sari loess-paleosol sequence in Caspian lowland, northern Iran. Journal of Mountain Science, 2019, 16, 1559-1570.	0.8	4
69	Soil-Forming Factors and Processes. World Soils Book Series, 2018, , 73-91.	0.1	3
70	Quartz OSL dating of loess deposits since the late glacial in the Southeast of Caspian Sea. Quaternary International, 2021, 583, 39-47.	0.7	3
71	Biological weathering of phlogopite during enriched vermicomposting. Pedosphere, 2021, 31, 440-451.	2.1	2
72	Late Pleistocene–Holocene pedogenesis and palaeoclimate in western Asia from palaeosols of the Central Iranian Plateau. Boreas, 0, , .	1.2	2

#	Article	IF	CITATIONS
73	Digital soil mapping of organic carbon at two depths in loess hilly region of Northern Iran. , 2022, , 467-475.		2
74	Paleosols and Past Climate Change. World Soils Book Series, 2018, , 149-161.	0.1	1
75	A GEOCHEMICAL INVESTIGATION OF PADDY (P) AND NON-PADDY (NP) SOILS ON A CATENA: A CASE STUDY OF GHAEMSHAHR IN MAZANDARAN PROVINCE, IRAN. Applied Ecology and Environmental Research, 2018, 16, 2487-2501.	0.2	0