
Paul E Hasty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8639168/publications.pdf Version: 2024-02-01

DALL F HASTY

#	Article	IF	CITATIONS
1	Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993, 364, 501-506.	13.7	1,184
2	Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature, 1997, 386, 804-810.	13.7	995
3	Aging and Genome Maintenance: Lessons from the Mouse?. Science, 2003, 299, 1355-1359.	6.0	538
4	Ku86-Deficient Mice Exhibit Severe Combined Immunodeficiency and Defective Processing of V(D)J Recombination Intermediates. Cell, 1996, 86, 379-389.	13.5	413
5	Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature, 1991, 350, 243-246.	13.7	354
6	ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2008, 28, 5082-5092.	1.1	268
7	Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends. Nature, 2010, 464, 1214-1217.	13.7	171
8	Analysis of ku80 -Mutant Mice and Cells with Deficient Levels of p53. Molecular and Cellular Biology, 2000, 20, 3772-3780.	1.1	160
9	Targeted Mutation in β1,4-Galactosyltransferase Leads to Pituitary Insufficiency and Neonatal Lethality. Developmental Biology, 1997, 181, 257-267.	0.9	152
10	Deletion of Ku70, Ku80, or Both Causes Early Aging without Substantially Increased Cancer. Molecular and Cellular Biology, 2007, 27, 8205-8214.	1.1	135
11	A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Human Molecular Genetics, 1993, 2, 1561-1569.	1.4	118
12	Chronic <scp>mTOR</scp> inhibition in mice with rapamycin alters <scp>T</scp> , <scp> B</scp> , myeloid, and innate lymphoid cells and gut flora and prolongs life of immuneâ€deficient mice. Aging Cell, 2015, 14, 945-956.	3.0	94
13	Deletion ofBrca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice. Genes Chromosomes and Cancer, 2003, 36, 317-331.	1.5	92
14	Rapamycin extends life span of Rb1+/â^ mice by inhibiting neuroendocrine tumors. Aging, 2013, 5, 100-110.	1.4	80
15	Broad segmental progeroid changes in short-lived <i>Ercc1</i> ^{â^`/Δ7} mice. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7219.	1.1	79
16	mTORC1 and p53. Cell Cycle, 2013, 12, 20-25.	1.3	79
17	Limiting the Persistence of a Chromosome Break Diminishes Its Mutagenic Potential. PLoS Genetics, 2009, 5, e1000683.	1.5	77
18	Modifying the Mouse: Design and Desire. Nature Biotechnology, 1992, 10, 534-539.	9.4	72

#		Article	IF	CITATIONS
19	9	DNA double-strand breaks: A potential causative factor for mammalian aging?. Mechanisms of Ageing and Development, 2008, 129, 416-424.	2.2	72
20	0	Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell, 2004, 3, 55-65.	3.0	71
2	1	eRapa Restores a Normal Life Span in a FAP Mouse Model. Cancer Prevention Research, 2014, 7, 169-178.	0.7	63
2:	2	Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13628-13633.	3.3	61
23	3	Chromosomal rearrangements in cancer. Molecular and Cellular Oncology, 2014, 1, e29904.	0.3	56
24	4	Mouse Cofactor of BRCA1 (Cobra1) Is Required for Early Embryogenesis. PLoS ONE, 2009, 4, e5034.	1.1	55
2	5	Adaptive Stress Response in Segmental Progeria Resembles Long-Lived Dwarfism and Calorie Restriction in Mice. PLoS Genetics, 2006, 2, e192.	1.5	53
2	6	<scp>DNA</scp> damage in normally and prematurely aged mice. Aging Cell, 2013, 12, 467-477.	3.0	50
2′	7	AGING: Genomic Priorities in Aging. Science, 2002, 296, 1250-1251.	6.0	47
2	8	p53 as an intervention target for cancer and aging. Pathobiology of Aging & Age Related Diseases, 2013, 3, 22702.	1.1	47
29	9	RAD51 Mutants Cause Replication Defects and Chromosomal Instability. Molecular and Cellular Biology, 2012, 32, 3663-3680.	1.1	46
30	0	Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell, 2020, 19, e13072.	3.0	41
3:	1	Severe phenotype in mice with termination mutation in exon 2 of cystic fibrosis gene. Somatic Cell and Molecular Genetics, 1995, 21, 177-187.	0.7	39
32	2	Non-homologous end joining, but not homologous recombination, enables survival for cells exposed to a histone deacetylase inhibitor. Nucleic Acids Research, 2005, 33, 5320-5330.	6.5	39
3	3	Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature, 2013, 501, 569-572.	13.7	39
34	4	RECQL5 and BLM exhibit divergent functions in cells defective for the Fanconi anemia pathway. Nucleic Acids Research, 2015, 43, 893-903.	6.5	39
3	5	Gene targeting in mouse embryonic stem cells with an adenoviral vector. Somatic Cell and Molecular Genetics, 1995, 21, 221-231.	0.7	36
3	6	DNAâ€₱K suppresses a p53â€independent apoptotic response to DNA damage. EMBO Reports, 2009, 10, 87-93.	2.0	35

#	Article	IF	CITATIONS
37	Myelodysplastic syndrome: An inability to appropriately respond to damaged DNA?. Experimental Hematology, 2013, 41, 665-674.	0.2	35
38	The impact of DNA damage, genetic mutation and cellular responses on cancer prevention, longevity and aging: observations in humans and mice. Mechanisms of Ageing and Development, 2005, 126, 71-77.	2.2	33
39	Biochemical and cellular characteristics of the 3' -> 5' exonuclease TREX2. Nucleic Acids Research, 2007, 35, 2682-2694.	6.5	33
40	p53 and rapamycin are additive. Oncotarget, 2015, 6, 15802-15813.	0.8	29
41	Disruption of the Gi2α locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair. Transgenic Research, 1993, 2, 345-355.	1.3	27
42	The impact energy metabolism and genome maintenance have on longevity and senescence: lessons from yeast to mammals. Mechanisms of Ageing and Development, 2001, 122, 1651-1662.	2.2	26
43	Embryonic stem cells deficient for Brca2 or Blm exhibit divergent genotoxic profiles that support opposing activities during homologous recombination. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 602, 110-120.	0.4	24
44	Extended longevity mechanisms in short-lived progeroid mice: Identification of a preservative stress response associated with successful aging. Mechanisms of Ageing and Development, 2007, 128, 58-63.	2.2	24
45	Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 766-767, 66-72.	0.4	24
46	A genotoxic screen: rapid analysis of cellular dose–response to a wide range of agents that either damage DNA or alter genome maintenance pathways. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554, 253-266.	0.4	23
47	Ku80 Deletion Suppresses Spontaneous Tumors and Induces a p53-Mediated DNA Damage Response. Cancer Research, 2008, 68, 9497-9502.	0.4	23
48	Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs. Mechanisms of Ageing and Development, 2007, 128, 601-608.	2.2	22
49	Potential Relationship between Inadequate Response to DNA Damage and Development of Myelodysplastic Syndrome. International Journal of Molecular Sciences, 2015, 16, 966-989.	1.8	22
50	Rapamycin Extends Life Span in Apc Colon Cancer FAP Model. Clinical Colorectal Cancer, 2021, 20, e61-e70.	1.0	22
51	Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Reports, 2021, 35, 109098.	2.9	22
52	Deletion of Individual Ku Subunits in Mice Causes an NHEJ-Independent Phenotype Potentially by Altering Apurinic/Apyrimidinic Site Repair. PLoS ONE, 2014, 9, e86358.	1.1	21
53	Cisplatin Depletes TREX2 and Causes Robertsonian Translocations as Seen in TREX2 Knockout Cells. Cancer Research, 2007, 67, 9077-9083.	0.4	18
54	Is NHEJ a tumor suppressor or an aging suppressor?. Cell Cycle, 2008, 7, 1139-1145.	1.3	18

#	Article	IF	CITATIONS
55	Prevention of Carcinogen and Inflammation-Induced Dermal Cancer by Oral Rapamycin Includes Reducing Genetic Damage. Cancer Prevention Research, 2015, 8, 400-409.	0.7	18
56	Rapamycin: The Cure for all that Ails. Journal of Molecular Cell Biology, 2010, 2, 17-19.	1.5	17
57	Acarbose improved survival for <i>Apc^{+/Min}</i> mice. Aging Cell, 2020, 19, e13088.	3.0	17
58	Gene conversion during vector insertion in embryonic stem cells. Nucleic Acids Research, 1995, 23, 2058-2064.	6.5	16
59	Temporal, Spatial and Tissue-Specific Expression of a Myogenin-lacZ Transgene Targeted to the Hprt Locus in Mice. BioTechniques, 1999, 27, 154-163.	0.8	16
60	Rebuttal to Miller: 'Accelerated aging': a primrose path to insight?'. Aging Cell, 2004, 3, 67-69.	3.0	16
61	Aging and p53: getting it straight A commentary on a recent paper by Gentry and Venkatachalam. Aging Cell, 2005, 4, 331-333.	3.0	16
62	A mechanism for 1,4-Benzoquinone-induced genotoxicity. Oncotarget, 2016, 7, 46433-46447.	0.8	16
63	TREX2 exonuclease defective cells exhibit double-strand breaks and chromosomal fragments but not Robertsonian translocations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 662, 84-87.	0.4	15
64	Trex2 Enables Spontaneous Sister Chromatid Exchanges Without Facilitating DNA Double-Strand Break Repair. Genetics, 2011, 188, 787-797.	1.2	15
65	Ku80-deleted cells are defective at base excision repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 745-746, 16-25.	0.4	15
66	Genetic Manipulation of the Mouse VIA Gene Targeting in Embryonic Stem Cells. Novartis Foundation Symposium, 1992, 165, 256-276.	1.2	14
67	Effect of Ku80 Deficiency on Mutation Frequencies and Spectra at a LacZ Reporter Locus in Mouse Tissues and Cells. PLoS ONE, 2008, 3, e3458.	1.1	13
68	The Progeroid Phenotype of Ku80 Deficiency Is Dominant over DNA-PKCS Deficiency. PLoS ONE, 2014, 9, e93568.	1.1	13
69	Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair. Nature Communications, 2018, 9, 2025.	5.8	13
70	HPRT minigene generates chimeric transcripts as a by-product of gene targeting. Genesis, 2007, 45, 275-281.	0.8	12
71	The phenotype of FancB-mutant mouse embryonic stem cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 712, 20-27.	0.4	12
72	Adaptations to chronic rapamycin in mice. Pathobiology of Aging & Age Related Diseases, 2016, 6, 31688.	1.1	12

#	Article	IF	CITATIONS
73	Musashi1 Contribution to Glioblastoma Development via Regulation of a Network of DNA Replication, Cell Cycle and Division Genes. Cancers, 2021, 13, 1494.	1.7	9
74	Homologous recombination defects and how they affect replication fork maintenance. AIMS Genetics, 2018, 05, 192-211.	1.9	9
75	Highâ€throughput knockâ€in coupling gene targeting with the <i>HPRT</i> minigene and Creâ€mediated recombination. Genesis, 2008, 46, 732-737.	0.8	8
76	Do p53 stress responses impact organismal aging?. Translational Cancer Research, 2016, 5, 685-691.	0.4	8
77	Targeting of the Gi2α Gene in es cells with Replacement and Insertion Vectors. Journal of Receptors and Signal Transduction, 1993, 13, 619-637.	1.2	7
78	Sex-dependent lifespan extension of ApcMin/+ FAP mice by chronic mTOR inhibition. Aging Pathobiology and Therapeutics, 2020, 2, 187-194.	0.3	7
79	TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51K133A. Cell Reports, 2020, 33, 108543.	2.9	5
80	High Preservation of CpG Cytosine Methylation Patterns at Imprinted Gene Loci in Liver and Brain of Aged Mice. PLoS ONE, 2013, 8, e73496.	1.1	4
81	Mouse Models of Accelerated Aging. , 2006, , 601-618.		2
82	Defining a genotoxic profile with mouse embryonic stem cells. Experimental Biology and Medicine, 2013, 238, 285-293.	1.1	2
83	Unlike p53, p27 failed to exhibit an anti-tumor genetic interaction with Ku80. Cell Cycle, 2009, 8, 2463-2466.	1.3	1
84	Oneâ€step knockin for inducible expression in mouse embryonic stem cells. Genesis, 2011, 49, 92-97.	0.8	1
85	mTOR, Aging, and Cancer: A Dangerous Link. , 2016, , 277-292.		1
86	Trex2 responds to damaged replication forks in diverse ways. Molecular and Cellular Oncology, 2021, 8, 1881394.	0.3	1
87	High-Throughput Inducible Expression of Transgenes at the Hprt Gene in Mouse Embryonic Stem Cells. BioTechniques, 2003, 34, 462-468.	0.8	0
88	Editorial. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 788, 1.	0.4	0
89	Longevity Assurance by Genome Maintenance. , 2013, , 25-62.		0