Hany El-Hamshary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Converging 3D Printing and Electrospinning: Effect of Poly(<scp>l</scp> â€lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromolecular Bioscience, 2022, 22, e2100342.	2.1	14
2	Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration. Acta Biomaterialia, 2022, 140, 233-246.	4.1	41
3	Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Materials Science and Engineering C, 2022, 134, 112643.	3.8	15
4	Immobilization of lanthanide doped aluminate phosphor onto recycled polyester toward the development of longâ€persistent photoluminescence smart window. Luminescence, 2022, 37, 610-621.	1.5	15
5	Prodrug inspired biâ€layered electrospun membrane with properties of enhanced tissue integration for guided tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	1.6	1
6	Development of Luminescent Solution Blown Spun Nanofibers from Recycled Polyester Waste Toward Dual-mode Fluorescent Photochromism. Journal of Polymers and the Environment, 2022, 30, 3483-3494.	2.4	26
7	Facile Preparation of Porous Carbon Flake-Supported Nickel Nanoplates as Effective Catalysts for Methanol Electrooxidation. Catalysts, 2022, 12, 556.	1.6	1
8	Composite Superelastic Aerogel Scaffolds Containing Flexible SiO ₂ Nanofibers Promote Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	17
9	Flexible and reusable carbon nano-fibre membranes for airborne contaminants capture. Science of the Total Environment, 2021, 754, 142231.	3.9	18
10	Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. Journal of Alloys and Compounds, 2021, 852, 156929.	2.8	44
11	Core-shell nanofibers from poly(vinyl alcohol) based biopolymers using emulsion electrospinning as drug delivery system for cephalexin drug. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 130-144.	1.2	25
12	The Impact of AN Contribution on the Thermal Characteristics and Molecular Dynamics of Novel Acrylonitrile–Styrene–Styrene Sodium Sulfonate Terpolymers. Polymers, 2021, 13, 420.	2.0	1
13	Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. Journal of Materials Chemistry B, 2021, 9, 1452-1465.	2.9	78
14	Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing. Frontiers of Materials Science, 2021, 15, 10-35.	1.1	12
15	Enhancing the Antifungal Activity of Griseofulvin by Incorporation a Green Biopolymer-Based Nanocomposite. Polymers, 2021, 13, 542.	2.0	43
16	Solution Blowing Spinning Technology towards Green Development of Urea Sensor Nanofibers Immobilized with Hydrazone Probe. Polymers, 2021, 13, 531.	2.0	30
17	Fabrication of Sustained Release System of Electrospun Poly(acrylic acid)/Dextran Nanofibers Using Emulsion Electrospinning as Wound Dressing Applications. Journal of Nanoscience and Nanotechnology, 2021, 21, 1613-1622.	0.9	2
18	Preparation and Characterization of Nanofibrous Scaffolds of Ag/Vanadate Hydroxyapatite Encapsulated into Polycaprolactone: Morphology, Mechanical, and In Vitro Cells Adhesion. Polymers, 2021, 13, 1327.	2.0	15

#	Article	IF	CITATIONS
19	Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Advanced Healthcare Materials, 2021, 10, e2100918.	3.9	79
20	Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications. Journal of Materials Science and Technology, 2021, 82, 47-56.	5.6	17
21	Efficient electrospun terpolymer nanofibers for the removal of cationic dyes from polluted waters: A non-linear isotherm and kinetic study. Journal of Environmental Chemical Engineering, 2021, 9, 105361.	3.3	15
22	Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioactive Materials, 2021, 6, 2783-2800.	8.6	71
23	Preparation of Multifunctional Plasma Cured Cellulose Fibers Coated with Photo-Induced Nanocomposite toward Self-Cleaning and Antibacterial Textiles. Polymers, 2021, 13, 3664.	2.0	5
24	A coupled catalyst composed of CoFe2O4 magnetic nanoparticle and [HMIM]Br-FeCl3 to intensify the oxidative desulfurization of FCC diesel. Green Chemical Engineering, 2021, 2, 441-449.	3.3	1
25	Biocidal Polymers: Synthesis, Characterization and Antimicrobial Activity of Bis-Quaternary Onium Salts of Poly(aspartate-co-succinimide). Polymers, 2021, 13, 23.	2.0	8
26	PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111352.	2.5	40
27	Synthesis of aminated electrospun carbon nanofibers and their application in removal of cationic dye. Materials Research Bulletin, 2020, 132, 111003.	2.7	12
28	Polyaspartate-Ionene/Na+-Montmorillonite Nanocomposites as Novel Adsorbent for Anionic Dye; Effect of Ionene Structure. Polymers, 2020, 12, 2843.	2.0	8
29	Impact of Chain Length on Release Behavior of Modified Polyethylene Glycol Intercalated-Montmorillonite Nanocomposite. Journal of Nanoscience and Nanotechnology, 2020, 20, 5546-5554.	0.9	5
30	Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioactive Materials, 2020, 5, 963-979.	8.6	121
31	An atorvastatin calcium and poly(L-lactide-co-caprolactone) core-shell nanofiber-covered stent to treat aneurysms and promote reendothelialization. Acta Biomaterialia, 2020, 111, 102-117.	4.1	20
32	Controlled Release of Phosphorus from Superabsorbent Phosphate-Bound Alginate- <i>Graft</i> -Polyacrylamide: Resistance to Soil Cations and Release Mechanism. ACS Omega, 2020, 5, 32919-32929.	1.6	17
33	Functionalized electrospun carbon nanofibers for removal of cationic dye. Arabian Journal of Chemistry, 2019, 12, 747-759.	2.3	46
34	One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation. Science of the Total Environment, 2019, 647, 725-733.	3.9	42
35	Physico-Chemical and Biological Evaluation of PLCL/SF Nanofibers Loaded with Oregano Essential Oil. Pharmaceutics, 2019, 11, 386.	2.0	35
36	Single-nozzle Core-shell Electrospun Nanofibers of PVP/Dextran as Drug Delivery System. Fibers and Polymers, 2019, 20, 2078-2089.	1.1	27

#	Article	IF	CITATIONS
37	Alkali-activated electrospun carbon nanofibers as an efficient bifunctional adsorbent for cationic and anionic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123835.	2.3	29
38	Effective adsorption of Coomassie brilliant blue dye using poly(phenylene diamine)grafted electrospun carbon nanofibers as a novel adsorbent. Materials Chemistry and Physics, 2019, 234, 133-145.	2.0	62
39	Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics, 2019, 11, 182.	2.0	151
40	Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Scientific Reports, 2019, 9, 19467.	1.6	44
41	Facile preparation of a controlled-release tubular scaffold for blood vessel implantation. Journal of Colloid and Interface Science, 2019, 539, 351-360.	5.0	28
42	Evaluation of clay-ionene nanocomposite carriers for controlled drug delivery: Synthesis, in vitro drug release, and kinetics. Materials Chemistry and Physics, 2019, 225, 122-132.	2.0	42
43	Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Journal of Colloid and Interface Science, 2019, 534, 625-636.	5.0	106
44	In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions. Cardiovascular Engineering and Technology, 2018, 9, 42-52.	0.7	12
45	Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal. Science of the Total Environment, 2018, 625, 706-715.	3.9	63
46	Controlled release of phosphorous fertilizer bound to carboxymethyl starch-g-polyacrylamide and maintaining a hydration level for the plant. International Journal of Biological Macromolecules, 2018, 116, 224-231.	3.6	49
47	Synthesis and characterization of incorporating mussel mimetic moieties into photoactive hydrogel adhesive. Colloids and Surfaces B: Biointerfaces, 2018, 161, 94-102.	2.5	16
48	Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	2.5	28
49	High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Advanced Engineering Materials, 2018, 20, 1700572.	1.6	84
50	Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering C, 2018, 82, 121-129.	3.8	87
51	Green Electrospining of Hydroxypropyl Cellulose Nanofibres for Drug Delivery Applications. Journal of Nanoscience and Nanotechnology, 2018, 18, 805-814.	0.9	62
52	Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 76-83.	1.9	65
53	Groove fibers based porous scaffold for cartilage tissue engineering application. Materials Letters, 2017, 192, 44-47.	1.3	9
54	Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chemical Engineering Journal, 2017, 315, 177-190.	6.6	77

#	Article	IF	CITATIONS
55	Development of Dynamic Liquid and Conjugated Electrospun Poly(L-lactide-co-caprolactone)/Collagen Nanoyarns for Regulating Vascular Smooth Muscle Cells Growth. Journal of Biomedical Nanotechnology, 2017, 13, 303-312.	0.5	17
56	Application of a bilayer tubular scaffold based on electrospun poly(<scp>l</scp> -lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. Journal of Materials Chemistry B, 2017, 5, 139-150.	2.9	38
57	Laminin-coated nerve guidance conduits based on poly(<scp>l</scp> -lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration. Journal of Materials Chemistry B, 2017, 5, 3186-3194.	2.9	50
58	Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering. Frontiers of Materials Science, 2017, 11, 22-32.	1.1	17
59	Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. International Journal of Biological Macromolecules, 2017, 96, 569-577.	3.6	91
60	Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 151, 314-323.	2.5	35
61	A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Frontiers of Materials Science, 2017, 11, 215-222.	1.1	30
62	Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 26684-26696.	4.0	77
63	Suture materials — Current and emerging trends. Journal of Biomedical Materials Research - Part A, 2016, 104, 1544-1559.	2.1	122
64	Polypyrrole-coated poly(<scp>l</scp> -lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. Journal of Materials Chemistry B, 2016, 4, 6670-6679.	2.9	94
65	An in situ forming tissue adhesive based on poly(ethylene glycol)-dimethacrylate and thiolated chitosan through the Michael reaction. Journal of Materials Chemistry B, 2016, 4, 5585-5592.	2.9	37
66	Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 24415-24425.	4.0	246
67	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	1.7	23
68	Preparation of biocompatible system based on electrospun CMC/PVA nanofibers as controlled release carrier of diclofenac sodium. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 566-573.	1.2	72
69	The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty. Frontiers of Materials Science, 2016, 10, 346-357.	1.1	4
70	In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Frontiers of Materials Science, 2016, 10, 90-100.	1.1	41
71	Development of poly (L-lactide-co-caprolactone) multichannel nerve conduit with aligned electrospun nanofibers for Schwann cell proliferation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 323-329.	1.8	18
72	Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2016, 142, 165-172.	2.5	98

#	Article	IF	CITATIONS
73	Preparation and characterization of electrospun <i>in-situ</i> cross-linked gelatin-graphite oxide nanofibers. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 385-402.	1.9	10
74	Development of Dual Neurotrophins-Encapsulated Electrospun Nanofibrous Scaffolds for Peripheral Nerve Regeneration. Journal of Biomedical Nanotechnology, 2016, 12, 1987-2000.	0.5	11
75	Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1947-1960.	0.5	46
76	Synthesis and application of polymer-clay nanocomposite-supported dichromate oxidizing agent. Polymer Composites, 2015, 36, 2066-2075.	2.3	1
77	Clay-Polymer Nanocomposite-Supported Brominating Agent. Clays and Clay Minerals, 2015, 63, 328-336.	0.6	6
78	Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iranian Polymer Journal (English Edition), 2015, 24, 29-40.	1.3	22
79	Synthesis and antibacterial of carboxymethyl starch-grafted poly(vinyl imidazole) against some plant pathogens. International Journal of Biological Macromolecules, 2015, 72, 1466-1472.	3.6	49
80	Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1013-1027.	1.9	8
81	Synthesis of Quaternized Amine-Terminated Polyacrylonitrile and Their Antimicrobial Assessment. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 527-537.	1.2	14
82	Synthesis and Modification of Amine-Terminated Maleic Anhydride-Ethylene Copolymers by Benzaldehyde Derivatives: Characterization and Antimicrobial Properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 563-575.	1.8	11
83	Removal of heavy metal using poly (N-vinylimidazole)-grafted-carboxymethylated starch. International Journal of Biological Macromolecules, 2014, 66, 289-294.	3.6	48
84	Improved Graft Copolymerization of Some Modified Cellulose Polymers with Vinyl Monomers Using Dibenzoyl Peroxide (DBPO) as Initiator. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 554-561.	1.2	0
85	Synthesis of Cationic and Ampholytic Starch Graft Acrylamide and their Aqueous Salt Absorption. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 454-461.	1.2	9
86	Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter, 2011, 7, 10812.	1.2	62
87	Oxidation of Phenol by Hydrogen Peroxide Catalyzed by Metal-Containing Poly(amidoxime) Grafted Starch. Molecules, 2011, 16, 9900-9911.	1.7	19
88	Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids and Surfaces B: Biointerfaces, 2011, 82, 307-315.	2.5	201
89	Catalytic Activity of Polymer Anchored Cu-tren Complex in the Oxidation of 2,6-Di- <i>t</i> -butyl Phenol. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 329-334.	1.2	8
90	A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication. Frontiers of Materials Science in China, 2009, 3, 359-366.	0.5	30

#	Article	IF	CITATIONS
91	Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. European Polymer Journal, 2007, 43, 4830-4838.	2.6	84
92	Removal of phenolic compounds using (2-hydroxyethyl methacrylate/acrylamidopyridine) hydrogel prepared by gamma radiation. Separation and Purification Technology, 2007, 57, 329-337.	3.9	30
93	Synthesis and biological study of some amino acid functionalized starch-graft-polyacrylamide. Carbohydrate Polymers, 2006, 64, 282-286.	5.1	17
94	Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer. Radiation Physics and Chemistry, 2006, 75, 590-595.	1.4	17
95	Oxidation of 2-mercaptoethanol catalyzed by cobalt(II) phthalocyaninetetrasulfonate supported on poly-N-alkyl-4-vinyl pyridinium/montmorillonite intercalates. Journal of Molecular Catalysis A, 2005, 234, 45-50.	4.8	14
96	Catalytic activities of amino acid modified, starch-grafted acrylamide for the decomposition of hydrogen peroxide. Journal of Applied Polymer Science, 2004, 93, 630-636.	1.3	11
97	Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. Journal of Applied Polymer Science, 2003, 89, 2522-2526.	1.3	34
98	Oxidation of 2,6-di-tert-butylphenol by molecular oxygen catalyzed by tetrasodium phthalocyaninatocobalt(II)tetrasulfonate bound to a polymer colloid. Macromolecular Chemistry and Physics, 1994, 195, 3845-3854.	1.1	10
99	Synthesis of monodisperse crosslinked polystyrene latexes containing (vinylbenzyl)trimethylammonium chloride units. Langmuir, 1993, 9, 1698-1703.	1.6	33
100	Chemically modified poly(methyl methacrylate) resin-bound triphenyl-phosphonium bromide as halogen-carrier in the bromination of organic compounds. European Polymer Journal, 1989, 25, 1083-1085.	2.6	10
101	Synthesis of pyridine and quinoline derivatives of poly(methyl methacrylate): their uses as brominating agents. European Polymer Journal, 1988, 24, 1111-1114.	2.6	11
102	Developed and Evaluation of Slow Release Phosphorus Fertilizer Using Mono-ammonium Phosphate and Di-ammonium Phosphate. International Research Journal of Pure and Applied Chemistry, 0, , 1-15.	0.2	1