Qing-Wen Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8639012/publications.pdf

Version: 2024-02-01

		257450	330143
38	2,568	24	37
papers	citations	h-index	g-index
41	41	41	2321
all docs	docs citations	times ranked	citing authors
an docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient, selective and sustainable catalysis of carbon dioxide. Green Chemistry, 2017, 19, 3707-3728.	9.0	797
2	Equimolar CO ₂ Capture by Nâ€Substituted Amino Acid Salts and Subsequent Conversion. Angewandte Chemie - International Edition, 2012, 51, 11306-11310.	13.8	206
3	Efficient chemical fixation of CO2 promoted by a bifunctional Ag2WO4/Ph3P system. Green Chemistry, 2014, 16, 1633.	9.0	185
4	Bifunctional Silver(I) Complex atalyzed CO ₂ Conversion at Ambient Conditions: Synthesis of αâ€Methylene Cyclic Carbonates and Derivatives. ChemSusChem, 2015, 8, 821-827.	6.8	135
5	Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(<scp>ii</scp>)-substituted polyoxometalate-based ionic liquids. Green Chemistry, 2016, 18, 282-287.	9.0	129
6	Catalytic fixation of CO ₂ to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chemistry, 2013, 15, 110-115.	9.0	114
7	Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions. Advanced Synthesis and Catalysis, 2016, 358, 1251-1258.	4.3	95
8	Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4.0]-undec-7-ene for the cycloaddition of epoxides with CO ₂ at atmospheric pressure. Green Chemistry, 2016, 18, 2871-2876.	9.0	91
9	Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate. Green Chemistry, 2013, 15, 2401.	9.0	78
10	Hydrogen bonding-inspired organocatalysts for CO2 fixation with epoxides to cyclic carbonates. Catalysis Today, 2016, 263, 69-74.	4.4	74
11	Iron(iii)-based ionic liquid-catalyzed regioselective benzylation of arenes and heteroarenes. Green Chemistry, 2011, 13, 1182.	9.0	53
12	Thermodynamically Favorable Synthesis of 2â€Oxazolidinones through Silverâ€Catalyzed Reaction of Propargylic Alcohols, CO _{2,} and 2â€Aminoethanols. ChemSusChem, 2016, 9, 2054-2058.	6.8	48
13	Equimolar Carbon Absorption by Potassium Phthalimide and In Situ Catalytic Conversion Under Mild Conditions. ChemSusChem, 2014, 7, 1484-1489.	6.8	45
14	Silver(I)-Promoted Cascade Reaction of Propargylic Alcohols, Carbon Dioxide, and Vicinal Diols: Thermodynamically Favorable Route to Cyclic Carbonates. ACS Omega, 2017, 2, 337-345.	3 . 5	44
15	Atomic zinc dispersed on graphene synthesized for active CO ₂ fixation to cyclic carbonates. Chemical Communications, 2019, 55, 1299-1302.	4.1	40
16	Silver(I)â€Catalyzed Synthesis of βâ€Oxopropylcarbamates from Propargylic Alcohols and CO ₂ Surrogate: A Gasâ€Free Process. ChemSusChem, 2015, 8, 3967-3972.	6.8	38
17	Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Advances, 2015, 5, 15668-15673.	3.6	34
18	Catalytic Conversion of Carbon Dioxide through C-N Bond Formation. Molecules, 2019, 24, 182.	3.8	32

#	Article	IF	Citations
19	Catalytic Conversion of CO ₂ to Cyclic Carbonates through Multifunctional Zincâ€Modified ZSMâ€5 Zeolite. Chinese Journal of Chemistry, 2018, 36, 187-193.	4.9	30
20	Silver(I)â€Catalyzed Threeâ€Component Reaction of Propargylic Alcohols, Carbon Dioxide and Monohydric Alcohols: Thermodynamically Feasible Access to βâ€Oxopropyl Carbonates. Chemistry - an Asian Journal, 2016, 11, 2065-2071.	3.3	29
21	Cascade Strategy for Atmospheric Pressure CO ₂ Fixation to Cyclic Carbonates via Silver Sulfadiazine and Et ₄ NBr Synergistic Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3378-3388.	6.7	29
22	Upgrading CO ₂ by Incorporation into Urethanes through Silver atalyzed Oneâ€Pot Stepwise Amidation Reaction. Chinese Journal of Chemistry, 2018, 36, 147-152.	4.9	28
23	Ag ^I /TMGâ€Promoted Cascade Reaction of Propargyl Alcohols, Carbon Dioxide, and 2â€Aminoethanols to 2â€Oxazolidinones. ChemPhysChem, 2017, 18, 3182-3188.	2.1	26
24	Synthesis of Oxazolidinones/Polyurethanes from Aziridines and CO2. Current Catalysis, 2012, 1, 107-124.	0.5	22
25	Cu(<scp>ii</scp>)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)–C(alkyl) bonds. Chemical Communications, 2016, 52, 2145-2148.	4.1	21
26	Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis. Synthesis, 2019, 51, 739-746.	2.3	20
27	PEG400-enhanced synthesis of gem-dichloroaziridines and gem-dichlorocyclopropanes via in situ generated dichlorocarbene. RSC Advances, 2013, 3, 19009.	3.6	15
28	Capture and Utilization of Carbon Dioxide with Polyethylene Glycol. Springer Briefs in Molecular Science, $2012, \ldots$	0.1	12
29	Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO ₂ . Chinese Journal of Organic Chemistry, 2016, 36, 744.	1.3	12
30	Synergistic Ag(I)/ Bu4NBr-catalyzed fixation of CO2 to \hat{I}^2 -oxopropyl carbonates via propargylic alcohols and monohydric alcohols. Tetrahedron, 2019, 75, 2343-2349.	1.9	11
31	Thermodynamic favorable CO2 conversion via vicinal diols and propargylic alcohols: A metal-free catalytic method. Chinese Chemical Letters, 2020, 31, 341-344.	9.0	11
32	Efficient hydrogenation of imines over Fe and ZnO powder in a self-neutralizing acidic CO2–H2O system. RSC Advances, 2014, 4, 11867.	3.6	10
33	Ag(I)/(C ₂ H ₅) ₄ NCl Cooperation Catalysis for Fixing CO ₂ or Its Derivatives into βâ€Oxopropylcarbamates. ChemistrySelect, 2018, 3, 6897-6901.	1.5	10
34	Incorporation of CO ₂ into carbonates through carboxylation/hydration reaction. , 2018, 8, 803-838.		9
35	Transition Metal-Promoted CO ₂ Conversion under Mild Reaction Conditions. ACS Symposium Series, 2015, , 47-70.	0.5	4
36	Chemical Adsorption Strategy for DMC-MeOH Mixture Separation. Molecules, 2021, 26, 1735.	3.8	3

#	Article	IF	CITATIONS
37	Front Cover Picture: Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions (Adv. Synth. Catal. 8/2016). Advanced Synthesis and Catalysis, 2016, 358, 1173-1173.	4.3	1
38	Inside Cover: Upgrading CO2 by Incorporation into Urethanes through Silver-Catalyzed One-Pot Stepwise Amidation Reaction (Chin. J. Chem. 2/2018). Chinese Journal of Chemistry, 2018, 36, 86-86.	4.9	0