
PatrÃ-cia Alves de Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8639003/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mitogen activated protein kinases SakA ^{HOG1} and MpkC collaborate for <i>Aspergillus fumigatus</i> virulence. Molecular Microbiology, 2016, 100, 841-859.	1.2	110
2	<i>Aspergillus fumigatus</i> MADS-Box Transcription Factor <i>rlmA</i> Is Required for Regulation of the Cell Wall Integrity and Virulence. G3: Genes, Genomes, Genetics, 2016, 6, 2983-3002.	0.8	83
3	<i>AspergillusÂfumigatus</i> protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cellular Microbiology, 2017, 19, e12770.	1.1	72
4	<scp>H</scp> igh osmolarity glycerol response <scp>PtcB</scp> phosphatase is important for <scp><i>A</i></scp> <i>spergillus fumigatus</i> virulence. Molecular Microbiology, 2015, 96, 42-54.	1.2	69
5	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66
6	The <i>Aspergillus fumigatus</i> CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect. MBio, 2017, 8, .	1.8	64
7	Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3: Genes, Genomes, Genetics, 2015, 5, 1525-1539.	0.8	52
8	Genome-wide transcriptome analysis of <i>Aspergillus fumigatus</i> exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA ^{HOG1} and MpkC dependent. Cellular Microbiology, 2017, 19, e12681.	1.1	52
9	Analyses of the three 1-Cys Peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H2O2 metabolism and virulence. Scientific Reports, 2018, 8, 12314.	1.6	52
10	Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Frontiers in Microbiology, 2019, 10, 854.	1.5	52
11	The Aspergillus fumigatus pkcAG579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model. PLoS ONE, 2015, 10, e0135195.	1.1	51
12	Molecular Characterization of Propolis-Induced Cell Death in Saccharomyces cerevisiae. Eukaryotic Cell, 2011, 10, 398-411.	3.4	49
13	Molecular Characterization of the Putative Transcription Factor SebA Involved in Virulence in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 518-531.	3.4	45
14	Identification of the cell targets important for propolis-induced cell death in Candida albicans. Fungal Genetics and Biology, 2013, 60, 74-86.	0.9	37
15	Involvement of the <i>Aspergillus nidulans</i> protein kinase C with farnesol tolerance is related to the unfolded protein response. Molecular Microbiology, 2010, 78, 1259-1279.	1.2	35
16	Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genetics, 2019, 15, e1008551.	1.5	34
17	Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvovaginal Infection. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-18.	0.5	33
18	The <i>Aspergillus fumigatus</i> SchA ^{SCH9} kinase modulates SakA ^{HOG1} MAP kinase activity and it is essential for virulence. Molecular Microbiology, 2016, 102, 642-671.	1.2	33

#	Article	IF	CITATIONS
19	Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiology Spectrum, 2021, 9, e0001021.	1.2	31
20	Aspergillus fumigatus Transcription Factors Involved in the Caspofungin Paradoxical Effect. MBio, 2020, 11, .	1.8	29
21	The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance. MBio, 2020, 11, .	1.8	27
22	Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surface, 2018, 1, 43-56.	1.5	20
23	Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. BMC Complementary and Alternative Medicine, 2012, 12, 194.	3.7	19
24	The Aspergillus fumigatus Mismatch Repair <i>MSH2</i> Homolog Is Important for Virulence and Azole Resistance. MSphere, 2019, 4, .	1.3	19
25	Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genetics, 2022, 18, e1009965.	1.5	16
26	The Influence of Genetic Stability on <i>Aspergillus fumigatus</i> Virulence and Azole Resistance. G3: Genes, Genomes, Genetics, 2018, 8, 265-278.	0.8	14
27	Aspergillus fumigatus G-Protein Coupled Receptors GprM and GprJ Are Important for the Regulation of the Cell Wall Integrity Pathway, Secondary Metabolite Production, and Virulence. MBio, 2020, 11, .	1.8	11
28	Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genetics, 2022, 18, e1010001.	1.5	11
29	The Aspergillus nidulans <i>nucA</i> ^{EndoG} Homologue Is Not Involved in Cell Death. Eukaryotic Cell, 2011, 10, 276-283.	3.4	10
30	Novel Biological Functions of the NsdC Transcription Factor in Aspergillus fumigatus. MBio, 2021, 12, .	1.8	10
31	Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity. MBio, 2021, 12, e0168221.	1.8	10
32	Aspergillus Fumigatus ZnfA, a Novel Zinc Finger Transcription Factor Involved in Calcium Metabolism and Caspofungin Tolerance. Frontiers in Fungal Biology, 2021, 2, .	0.9	0
33	Title is missing!. , 2019, 15, e1008551.		0
34	Title is missing!. , 2019, 15, e1008551.		0
35	Title is missing!. , 2019, 15, e1008551.		0