
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8638896/publications.pdf Version: 2024-02-01

HONCKUI DENC

#	Article	IF	CITATIONS
1	Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein and Cell, 2022, , 1.	4.8	12
2	Requirements for humanâ€induced pluripotent stem cells. Cell Proliferation, 2022, 55, e13182.	2.4	5
3	Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nature Medicine, 2022, 28, 272-282.	15.2	55
4	YY1 safeguard multidimensional epigenetic landscape associated with extended pluripotency. Nucleic Acids Research, 2022, 50, 12019-12038.	6.5	14
5	Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022, 605, 325-331.	13.7	144
6	Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Research, 2022, 32, 513-529.	5.7	47
7	ADAM17 is an essential attachment factor for classical swine fever virus. PLoS Pathogens, 2021, 17, e1009393.	2.1	15
8	In vivo chemical reprogramming of astrocytes into neurons. Cell Discovery, 2021, 7, 12.	3.1	46
9	Chemically defined and xeno-free culture condition for human extended pluripotent stem cells. Nature Communications, 2021, 12, 3017.	5.8	16
10	Human pluripotent stem cell-derived eosinophils reveal potent cytotoxicity against solid tumors. Stem Cell Reports, 2021, 16, 1697-1704.	2.3	10
11	Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Research, 2021, 31, 259-271.	5.7	54
12	Effective treatment of SARS-CoV-2-infected rhesus macaques by attenuating inflammation. Cell Research, 2021, 31, 229-232.	5.7	8
13	The Vascular Disrupting Agent CA4P Improves the Antitumor Efficacy of CAR-T Cells in Preclinical Models of Solid Human Tumors. Molecular Therapy, 2020, 28, 75-88.	3.7	33
14	Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Research, 2020, 30, 95-97.	5.7	44
15	Injectable Porous Microchips with Oxygen Reservoirs and an Immune-Niche Enhance the Efficacy of CAR T Cell Therapy in Solid Tumors. ACS Applied Materials & Interfaces, 2020, 12, 56712-56722.	4.0	17
16	Generation of human hepatocytes from extended pluripotent stem cells. Cell Research, 2020, 30, 810-813.	5.7	22
17	Elimination of senescent cells by \hat{l}^2 -galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Research, 2020, 30, 574-589.	5.7	187
18	Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein and Cell, 2019, 10, 20-30.	4.8	16

#	Article	IF	CITATIONS
19	Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rgâ^'/â^' mice. Protein and Cell, 2019, 10, 31-42.	4.8	6
20	A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Research, 2019, 29, 696-710.	5.7	43
21	Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell, 2019, 179, 687-702.e18.	13.5	175
22	CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. New England Journal of Medicine, 2019, 381, 1240-1247.	13.9	313
23	Long-term functional maintenance of primary human hepatocytes in vitro. Science, 2019, 364, 399-402.	6.0	147
24	Chimeric Antigen Receptor–modified T Cells Repressed Solid Tumors and Their Relapse in an Established Patient-derived Colon Carcinoma Xenograft Model. Journal of Immunotherapy, 2019, 42, 33-42.	1.2	41
25	Targeting JNK pathway promotes human hematopoietic stem cell expansion. Cell Discovery, 2019, 5, 2.	3.1	31
26	Small molecule-induced cellular fate reprogramming: promising road leading to Rome. Current Opinion in Genetics and Development, 2018, 52, 29-35.	1.5	32
27	Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming. Cell Stem Cell, 2018, 23, 31-45.e7.	5.2	122
28	Engineered T lymphocytes eliminate lung metastases in models of pancreatic cancer. Oncotarget, 2018, 9, 13694-13705.	0.8	11
29	Chemical reprogramming: the CiPSCs and the CiNs. National Science Review, 2017, 4, 7-10.	4.6	6
30	CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance InÂVivo. Molecular Therapy, 2017, 25, 1782-1789.	3.7	179
31	Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State. Cell Stem Cell, 2017, 21, 264-273.e7.	5.2	74
32	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	13.5	382
33	<scp>NAT</scp> 10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Reports, 2016, 17, 349-366.	2.0	116
34	Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 2016, 26, 34-45.	5.7	62
35	Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discovery, 2015, 1, 15040.	3.1	50
36	A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell, 2015, 163, 1678-1691.	13.5	210

#	Article	IF	CITATIONS
37	Direct Lineage Reprogramming: Strategies, Mechanisms, and Applications. Cell Stem Cell, 2015, 16, 119-134.	5.2	350
38	GATA family members as inducers for cellular reprogramming to pluripotency. Cell Research, 2015, 25, 169-180.	5.7	53
39	Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons. Cell Stem Cell, 2015, 17, 195-203.	5.2	358
40	Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance. Nature Communications, 2015, 6, 7398.	5.8	34
41	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	13.7	41
42	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
43	Efficient derivation of embryonic stem cells from NOD-scid Il2rg â^'/â^' mice. Protein and Cell, 2015, 6, 916-918.	4.8	7
44	A Novel Retinoblastoma Protein (RB) E3 Ubiquitin Ligase (NRBE3) Promotes RB Degradation and Is Transcriptionally Regulated by E2F1 Transcription Factor. Journal of Biological Chemistry, 2015, 290, 28200-28213.	1.6	23
45	Human Hepatocytes with Drug Metabolic Function Induced from Fibroblasts by Lineage Reprogramming. Cell Stem Cell, 2014, 14, 394-403.	5.2	279
46	Generation of Naive Induced Pluripotent Stem Cells from Rhesus Monkey Fibroblasts. Cell Stem Cell, 2014, 15, 488-497.	5.2	110
47	Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells. Cell Research, 2014, 24, 1181-1200.	5.7	41
48	Mouse SCNT ESCs Have Lower Somatic Mutation Load Than SyngeneicÂiPSCs. Stem Cell Reports, 2014, 2, 399-405.	2.3	20
49	Directed Differentiation of Human Embryonic Stem Cells into Thymic Epithelial Progenitor-like Cells Reconstitutes the Thymic Microenvironment InÂVivo. Cell Stem Cell, 2013, 13, 230-236.	5.2	112
50	Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science, 2013, 341, 651-654.	6.0	1,179
51	Lineage Specifiers: New Players in the Induction of Pluripotency. Genomics, Proteomics and Bioinformatics, 2013, 11, 259-263.	3.0	17
52	Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers. Cell, 2013, 153, 963-975.	13.5	272
53	Promotion of the efficient metabolic maturation of human pluripotent stem cell-derived hepatocytes by correcting specification defects. Cell Research, 2013, 23, 157-161.	5.7	47
54	Differential Sensitivity of Bat Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses. PLoS ONE, 2013, 8, e72942.	1.1	103

#	Article	IF	CITATIONS
55	TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Research, 2012, 22, 194-207.	5.7	72
56	CD24: A Novel Surface Marker for PDX1-Positive Pancreatic Progenitors Derived from Human Embryonic Stem Cells. Stem Cells, 2011, 29, 609-617.	1.4	63
57	Identification and Characterization of Bmi-1-responding Element within the Human p16 Promoter*. Journal of Biological Chemistry, 2010, 285, 33219-33229.	1.6	51
58	Generation of Homogeneous PDX1+ Pancreatic Progenitors from Human ES Cell-derived Endoderm Cells. Journal of Molecular Cell Biology, 2010, 2, 50-60.	1.5	101
59	Powering Reprogramming with Vitamin C. Cell Stem Cell, 2010, 6, 1-2.	5.2	36
60	Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus. Journal of General Virology, 2009, 90, 1724-1729.	1.3	33
61	Angiotensin-converting enzyme 2 (ACE2) from raccoon dog can serve as an efficient receptor for the spike protein of severe acute respiratory syndrome coronavirus. Journal of General Virology, 2009, 90, 2695-2703.	1.3	18
62	Generation of pancreatic islet cells from human embryonic stem cells. Science in China Series C: Life Sciences, 2009, 52, 615-621.	1.3	20
63	Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Research, 2009, 19, 1233-1242.	5.7	452
64	Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Research, 2009, 19, 429-438.	5.7	525
65	Pluripotin Combined with Leukemia Inhibitory Factor Greatly Promotes the Derivation of Embryonic Stem Cell Lines from Refractory Strains. Stem Cells, 2009, 27, 383-389.	1.4	44
66	Repopulation Efficiencies of Adult Hepatocytes, Fetal Liver Progenitor Cells, and Embryonic Stem Cell-Derived Hepatic Cells in Albumin-Promoter-Enhancer Urokinase-Type Plasminogen Activator Mice. American Journal of Pathology, 2009, 175, 1483-1492.	1.9	106
67	A Mouse Model of Inducible Liver Injury Caused by Tet-On Regulated Urokinase for Studies of Hepatocyte Transplantation. American Journal of Pathology, 2009, 175, 1975-1983.	1.9	22
68	Derivation and Characterization of Hepatic Progenitor Cells from Human Embryonic Stem Cells. PLoS ONE, 2009, 4, e6468.	1.1	91
69	P21cip-Overexpression in the Mouse β Cells Leads to the Improved Recovery from Streptozotocin-Induced Diabetes. PLoS ONE, 2009, 4, e8344.	1.1	24
70	A human endothelial cell feeder system that efficiently supports the undifferentiated growth of mouse embryonic stem cells. Differentiation, 2008, 76, 923-930.	1.0	13
71	Two Supporting Factors Greatly Improve the Efficiency of Human iPSC Generation. Cell Stem Cell, 2008, 3, 475-479.	5.2	433
72	Generation of Induced Pluripotent Stem Cells from Adult Rhesus Monkey Fibroblasts. Cell Stem Cell, 2008, 3, 587-590.	5.2	439

#	Article	IF	CITATIONS
73	Difference in Receptor Usage between Severe Acute Respiratory Syndrome (SARS) Coronavirus and SARS-Like Coronavirus of Bat Origin. Journal of Virology, 2008, 82, 1899-1907.	1.5	145
74	Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood, 2008, 111, 1933-1941.	0.6	270
75	Primordial Germ Cell Specification from Embryonic Stem Cells. PLoS ONE, 2008, 3, e4013.	1.1	79
76	Regulation of Apoptosis and Differentiation by p53 in Human Embryonic Stem Cells. Journal of Biological Chemistry, 2007, 282, 5842-5852.	1.6	225
77	Mature oocytes derived from purified mouse fetal germ cells. Human Reproduction, 2007, 23, 54-61.	0.4	29
78	In vitro development of mouse fetal germ cells into mature oocytes. Reproduction, 2007, 134, 223-231.	1.1	35
79	Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 2007, 45, 1229-1239.	3.6	574
80	In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Research, 2007, 17, 333-344.	5.7	304
81	MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation, 2007, 75, 299-307.	1.0	209
82	Serial nuclear transfer improves the developmental potential of mouse embryos cloned from oocytes matured in a protein-free medium. Molecular Reproduction and Development, 2007, 74, 560-567.	1.0	7
83	Nanog reporter system in mouse embryonic stem cells based on highly efficient BAC homologous recombination. Science Bulletin, 2007, 52, 2782-2788.	1.7	0
84	Elicitation of neutralizing antibodies by intranasal administration of recombinant vesicular stomatitis virus expressing human immunodeficiency virus type 1 gp120. Biochemical and Biophysical Research Communications, 2006, 339, 526-532.	1.0	10
85	A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochemical and Biophysical Research Communications, 2006, 346, 131-139.	1.0	113
86	Induction of neutralizing antibody against human immunodeficiency virus type 1 (HIV-1) by immunization with gp41 membrane-proximal external region (MPER) fused with porcine endogenous retrovirus (PERV) p15E fragment. Vaccine, 2006, 24, 435-442.	1.7	33
87	Mouse oocytes derived from fetal germ cells are competent to support the development of embryos by in vitro fertilization. Molecular Reproduction and Development, 2006, 73, 1312-1317.	1.0	14
88	Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. Journal of General Virology, 2006, 87, 1691-1695.	1.3	175
89	Inducing Embryonic Stem Cells to Differentiate into Pancreatic β Cells by a Novel Three-Step Approach with Activin A and All-TransRetinoic Acid. Stem Cells, 2005, 23, 656-662.	1.4	184
90	Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochemical and Biophysical Research Communications, 2005, 330, 934-942.	1.0	208

#	Article	IF	CITATIONS
91	Neutralizing Antibodies in Patients with Severe Acute Respiratory Syndrome-Associated Coronavirus Infection. Journal of Infectious Diseases, 2004, 190, 1119-1126.	1.9	137
92	Identification of an Antigenic Determinant on the S2 Domain of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Capable of Inducing Neutralizing Antibodies. Journal of Virology, 2004, 78, 6938-6945.	1.5	129
93	Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology, 2004, 330, 332-341.	1.1	108
94	Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochemical and Biophysical Research Communications, 2004, 319, 746-746.	1.0	0
95	Expression cloning of functional receptor used by SARS coronavirus. Biochemical and Biophysical Research Communications, 2004, 315, 439-444.	1.0	132
96	Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochemical and Biophysical Research Communications, 2004, 319, 746-752.	1.0	103
97	Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochemical and Biophysical Research Communications, 2004, 321, 994-1000.	1.0	98
98	Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins. Biochemical and Biophysical Research Communications, 2004, 325, 302-307.	1.0	4
99	N-terminal of L protein of vesicular stomatitis virus contains a new signal sequence. Science Bulletin, 2003, 48, 1352-1357.	1.7	0
100	Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature, 1997, 388, 296-300.	13.7	725
101	Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381, 661-666.	13.7	3,667