Pedro Reviriego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/863881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IEEE 802.3az: the road to energy efficient ethernet. , 2010, 48, 50-56.		255
2	Performance evaluation of energy efficient ethernet. IEEE Communications Letters, 2009, 13, 697-699.	2.5	112
3	An Initial Evaluation of Energy Efficient Ethernet. IEEE Communications Letters, 2011, 15, 578-580.	2.5	76
4	Efficient Majority Logic Fault Detection With Difference-Set Codes for Memory Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012, 20, 148-156.	2.1	62
5	Reliability Analysis of Memories Suffering Multiple Bit Upsets. IEEE Transactions on Device and Materials Reliability, 2007, 7, 592-601.	1.5	57
6	Hamming SEC-DAED and Extended Hamming SEC-DED-TAED Codes Through Selective Shortening and Bit Placement. IEEE Transactions on Device and Materials Reliability, 2014, 14, 574-576.	1.5	57
7	A Methodology for Automatic Insertion of Selective TMR in Digital Circuits Affected by SEUs. IEEE Transactions on Nuclear Science, 2009, 56, 2091-2102.	1.2	55
8	MCU Tolerance in SRAMs Through Low-Redundancy Triple Adjacent Error Correction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23, 2332-2336.	2.1	53
9	Burst Transmission in Energy Efficient Ethernet. IEEE Internet Computing, 2010, , .	3.2	51
10	A Simple Analytical Model for Energy Efficient Ethernet. IEEE Communications Letters, 2011, 15, 773-775.	2.5	45
11	Enhanced Detection of Double and Triple Adjacent Errors in Hamming Codes Through Selective Bit Placement. IEEE Transactions on Device and Materials Reliability, 2012, 12, 357-362.	1.5	44
12	A Method to Construct Low Delay Single Error Correction Codes for Protecting Data Bits Only. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32, 479-483.	1.9	42
13	Protection of Memories Suffering MCUs Through the Selection of the Optimal Interleaving Distance. IEEE Transactions on Nuclear Science, 2010, 57, 2124-2128.	1.2	38
14	Matrix-Based Codes for Adjacent Error Correction. IEEE Transactions on Nuclear Science, 2010, 57, 2106-2111.	1.2	37
15	A Method to Design SEC-DED-DAEC Codes With Optimized Decoding. IEEE Transactions on Device and Materials Reliability, 2014, 14, 884-889.	1.5	36
16	Error Detection in Majority Logic Decoding of Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 156-159.	2.1	34
17	Multiple Cell Upset Correction in Memories Using Difference Set Codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2592-2599.	3.5	32
18	Low Delay Single Symbol Error Correction Codes Based on Reed Solomon Codes. IEEE Transactions on Computers, 2015, 64, 1497-1501.	2.4	30

#	Article	IF	CITATIONS
19	New Protection Techniques Against SEUs for Moving Average Filters in a Radiation Environment. IEEE Transactions on Nuclear Science, 2007, 54, 957-964.	1.2	28
20	Energy Efficiency in Industrial Ethernet: The Case of Powerlink. IEEE Transactions on Industrial Electronics, 2010, 57, 2896-2903.	5.2	27
21	Structural DMR: A Technique for Implementation of Soft-Error-Tolerant FIR Filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 512-516.	2.2	27
22	Efficient error detection in Double Error Correction BCH codes for memory applications. Microelectronics Reliability, 2012, 52, 1528-1530.	0.9	26
23	Improving counting Bloom filter performance with fingerprints. Information Processing Letters, 2016, 116, 304-309.	0.4	26
24	PR-TCAM: Efficient TCAM Emulation on Xilinx FPGAs Using Partial Reconfiguration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1952-1956.	2.1	25
25	Diverse Double Modular Redundancy: A New Direction for Soft-Error Detection and Correction. IEEE Design and Test, 2013, 30, 87-95.	1.1	24
26	Efficient Implementations of Reduced Precision Redundancy (RPR) Multiply and Accumulate (MAC). IEEE Transactions on Computers, 2019, 68, 784-790.	2.4	24
27	Towards an energy efficient 10 Gb/s optical ethernet: Performance analysis and viability. Optical Switching and Networking, 2011, 8, 131-138.	1.2	23
28	Parallel d-Pipeline: A Cuckoo Hashing Implementation for Increased Throughput. IEEE Transactions on Computers, 2016, 65, 326-331.	2.4	23
29	Cuckoo Filters and Bloom Filters: Comparison and Application to Packet Classification. IEEE Transactions on Network and Service Management, 2020, 17, 2690-2701.	3.2	23
30	Study of the effects of MBUs on the reliability of a 150 nm SRAM device. , 2008, , .		22
31	Reliability of Single-Error Correction Protected Memories. IEEE Transactions on Reliability, 2009, 58, 193-201.	3.5	21
32	Study of the Effects of Multibit Error Correction Codes on the Reliability of Memories in the Presence of MBUs. IEEE Transactions on Device and Materials Reliability, 2009, 9, 31-39.	1.5	21
33	Fault Tolerant Parallel FFTs Using Error Correction Codes and Parseval Checks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 769-773.	2.1	21
34	A (64,45) Triple Error Correction Code for Memory Applications. IEEE Transactions on Device and Materials Reliability, 2012, 12, 101-106.	1.5	20
35	Concurrent Error Detection for Orthogonal Latin Squares Encoders and Syndrome Computation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 2334-2338.	2.1	20
36	Majority Voting-Based Reduced Precision Redundancy Adders. IEEE Transactions on Device and Materials Reliability, 2018, 18, 122-124.	1.5	20

#	Article	IF	CITATIONS
37	An ALU Protection Methodology for Soft Processors on SRAM-Based FPGAs. IEEE Transactions on Computers, 2019, 68, 1404-1410.	2.4	20
38	Evaluating the Impact of the Instruction Set on Microprocessor Reliability to Soft Errors. IEEE Transactions on Device and Materials Reliability, 2018, 18, 70-79.	1.5	19
39	An Efficient Methodology for On-Chip SEU Injection in Flip-Flops for Xilinx FPGAs. IEEE Transactions on Nuclear Science, 2018, 65, 989-996.	1.2	19
40	Efficient Protection Techniques Against SEUs for Adaptive Filters: An Echo Canceller Case Study. IEEE Transactions on Nuclear Science, 2008, 55, 1700-1707.	1.2	18
41	Efficient Implementations of 4-Bit Burst Error Correction for Memories. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 2037-2041.	2.2	18
42	Error Detection and Correction in SRAM Emulated TCAMs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 486-490.	2.1	18
43	Increasing Reliability of FPGA-Based Adaptive Equalizers in the Presence of Single Event Upsets. IEEE Transactions on Nuclear Science, 2011, 58, 1072-1077.	1.2	17
44	Area efficient concurrent error detection and correction for parallel filters. Electronics Letters, 2012, 48, 1258.	0.5	17
45	Security of HyperLogLog (HLL) Cardinality Estimation: Vulnerabilities and Protection. IEEE Communications Letters, 2020, 24, 976-980.	2.5	17
46	Combined SEU and SEFI Protection for Memories Using Orthogonal Latin Square Codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1933-1943.	3.5	16
47	Error Detection Technique for a Median Filter. IEEE Transactions on Nuclear Science, 2017, , 1-1.	1.2	16
48	Improving Memory Reliability Against Soft Errors Using Block Parity. IEEE Transactions on Nuclear Science, 2011, 58, 981-986.	1.2	15
49	A Method to Extend Orthogonal Latin Square Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22, 1635-1639.	2.1	15
50	Efficient Protection of the Register File in Soft-Processors Implemented on Xilinx FPGAs. IEEE Transactions on Computers, 2018, 67, 299-304.	2.4	15
51	Efficient error detection codes for multiple-bit upset correction in SRAMs with BICS. ACM Transactions on Design Automation of Electronic Systems, 2009, 14, 1-10.	1.9	14
52	FastTag: A Technique to Protect Cache Tags Against Soft Errors. IEEE Transactions on Device and Materials Reliability, 2014, 14, 935-937.	1.5	14
53	Detection of Limited Magnitude Errors in Emerging Multilevel Cell Memories by One-Bit Parity (OBP) or Two-Bit Parity (TBP). IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1792-1802. 	3.2	14
54	Adaptive Cuckoo Filters. Journal of Experimental Algorithmics, 2020, 25, 1-20.	0.7	14

4

#	Article	IF	CITATIONS
55	Memory Reliability Model for Accumulated and Clustered Soft Errors. IEEE Transactions on Nuclear Science, 2011, 58, 2483-2492.	1.2	13
56	Fault Tolerant Single Error Correction Encoders. Journal of Electronic Testing: Theory and Applications (JETTA), 2011, 27, 215-218.	0.9	13
57	Efficient Arithmetic-Residue-Based SEU-Tolerant FIR Filter Design. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60, 497-501.	2.2	13
58	EMOMA: Exact Match in One Memory Access. IEEE Transactions on Knowledge and Data Engineering, 2018, 30, 2120-2133.	4.0	13
59	A Microprocessor Protection Architecture against Hardware Trojans in Memories. , 2020, , .		13
60	Comparison of the Susceptibility to Soft Errors of SRAM-Based FPGA Error Correction Codes Implementations. IEEE Transactions on Nuclear Science, 2012, 59, 619-624.	1.2	12
61	A Scheme to Improve the Intrinsic Error Detection of the Instruction Set Architecture. IEEE Computer Architecture Letters, 2017, 16, 103-106.	1.0	12
62	Design and Implementation of Configuration Memory SEU-Tolerant Viterbi Decoders in SRAM-Based FPGAs. IEEE Nanotechnology Magazine, 2019, 18, 691-699.	1.1	12
63	Low delay Single Error Correction and Double Adjacent Error Correction (SEC-DAEC) codes. Microelectronics Reliability, 2019, 97, 31-37.	0.9	12
64	Denial of Service Attack on Cuckoo Filter Based Networking Systems. IEEE Communications Letters, 2020, 24, 1428-1432.	2.5	12
65	Analysis of Blocking Probability of Data Bursts With Continuous-Time Variable Offsets in Single-Wavelength OBS Switches. Journal of Lightwave Technology, 2008, 26, 1559-1568.	2.7	11
66	Optimizing Scrubbing Sequences for Advanced Computer Memories. IEEE Transactions on Device and Materials Reliability, 2010, 10, 192-200.	1.5	11
67	Efficient Soft Error-Tolerant Adaptive Equalizers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 2032-2040.	3.5	11
68	Low Complexity Concurrent Error Detection for Complex Multiplication. IEEE Transactions on Computers, 2013, 62, 1899-1903.	2.4	11
69	Single Event Transient Tolerant Bloom Filter Implementations. IEEE Transactions on Computers, 2017, 66, 1831-1836.	2.4	11
70	SEFI Protection for Nanosat 16-Bit Chip Onboard Computer Memories. IEEE Transactions on Device and Materials Reliability, 2017, 17, 698-707.	1.5	11
71	A Scheme to Design Concurrent Error Detection Techniques for the Fast Fourier Transform Implemented in SRAM-Based FPGAs. IEEE Transactions on Computers, 2018, 67, 1039-1045.	2.4	11
72	Constructions and Applications for Accurate Counting of the Bloom Filter False Positive Free Zone. , 2020, , .		11

5

#	Article	IF	CITATIONS
73	Flexible Packet Matching with Single Double Cuckoo Hash. , 2017, 55, 212-217.		11
74	Selection of the Optimal Memory Configuration in a System Affected by Soft Errors. IEEE Transactions on Device and Materials Reliability, 2009, 9, 403-411.	1.5	10
75	Low-cost single error correction multiple adjacent error correction codes. Electronics Letters, 2012, 48, 1470.	0.5	10
76	Improving the performance of Invertible Bloom Lookup Tables. Information Processing Letters, 2014, 114, 185-191.	0.4	10
77	OMASS: One Memory Access Set Separation. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 1940-1943.	4.0	10
78	A Method to Design Single Error Correction Codes With Fast Decoding for a Subset of Critical Bits. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 171-175.	2.2	10
79	A Double Error Correction Code for 32-Bit Data Words With Efficent Decoding. IEEE Transactions on Device and Materials Reliability, 2018, 18, 125-127.	1.5	10
80	Analysis of average burst-assembly delay and applications in proportional service differentiation. Photonic Network Communications, 2007, 14, 183-197.	1.4	9
81	Error-Detection Enhanced Decoding of Difference Set Codes for Memory Applications. IEEE Transactions on Device and Materials Reliability, 2012, 12, 335-340.	1.5	9
82	Efficient Coding Schemes for Fault-Tolerant Parallel Filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 666-670.	2.2	9
83	The Tandem Counting Bloom Filter - It Takes Two Counters to Tango. IEEE/ACM Transactions on Networking, 2019, 27, 2252-2265.	2.6	9
84	CFBF: Reducing the Insertion Time of Cuckoo Filters With an Integrated Bloom Filter. IEEE Communications Letters, 2019, 23, 1857-1861.	2.5	9
85	A fast and efficient technique to apply Selective TMR through optimization. Microelectronics Reliability, 2011, 51, 2388-2401.	0.9	8
86	Using Single Error Correction Codes to Protect Against Isolated Defects and Soft Errors. IEEE Transactions on Reliability, 2013, 62, 238-243.	3.5	8
87	Soft error tolerant Infinite Impulse Response filters using reduced precision replicas. , 2011, , .		7
88	Low Power embedded DRAM caches using BCH code partitioning. , 2012, , .		7
89	Reducing the Cost of Triple Adjacent Error Correction in Double Error Correction Orthogonal Latin Square Codes. IEEE Transactions on Device and Materials Reliability, 2016, 16, 269-271.	1.5	7
90	Evaluating Direct Compare for Double Error-Correction Codes. IEEE Transactions on Device and Materials Reliability, 2017, 17, 802-804.	1.5	7

#	Article	IF	CITATIONS
91	Efficient Fault-Tolerant Design for Parallel Matched Filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 366-370.	2.2	7
92	Voting Margin: A Scheme for Error-Tolerant <i>k</i> Nearest Neighbors Classifiers for Machine Learning. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 2089-2098.	3.2	7
93	Error-Tolerant Computation for Voting Classifiers With Multiple Classes. IEEE Transactions on Vehicular Technology, 2020, 69, 13718-13727.	3.9	7
94	BPR-TCAM—Block and Partial Reconfiguration based TCAM on Xilinx FPGAs. Electronics (Switzerland), 2020, 9, 353.	1.8	7
95	Toward a Fault-Tolerant Star Tracker for Small Satellite Applications. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 3421-3431.	2.6	7
96	Avoiding Flow Size Overestimation in Count-Min Sketch With Bloom Filter Constructions. IEEE Transactions on Network and Service Management, 2021, 18, 3662-3676.	3.2	7
97	Performance Evaluation and Design of Polymorphous OBS Networks With Guaranteed TDM Services. Journal of Lightwave Technology, 2009, 27, 2495-2505.	2.7	6
98	Enhanced Implementations of Hamming Codes to Protect FIR Filters. IEEE Transactions on Nuclear Science, 2010, 57, 2112-2118.	1.2	6
99	On the Use of Euclidean Geometry Codes for Efficient Multibit Error Correction on Memory Systems. IEEE Transactions on Nuclear Science, 2012, 59, 824-828.	1.2	6
100	Introducing energy efficiency in the VDE 0885-763 standard for high speed communication over plastic optical fibers. , 2013, 51, 97-102.		6
101	Performance analysis of Energy Efficient Ethernet on video streaming servers. Computer Networks, 2013, 57, 599-608.	3.2	6
102	Reducing the Cost of Implementing Error Correction Codes in Content Addressable Memories. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60, 432-436.	2.2	6
103	Energy Efficient Exact Matching for Flow Identification with Cuckoo Affinity Hashing. IEEE Communications Letters, 2014, 18, 885-888.	2.5	6
104	Implementing Double Error Correction Orthogonal Latin Squares Codes in SRAM-based FPGAs. Microelectronics Reliability, 2016, 56, 221-227.	0.9	6
105	Fault tolerant encoders for Single Error Correction and Double Adjacent Error Correction codes. Microelectronics Reliability, 2018, 81, 167-173.	0.9	6
106	Reduced Precision Redundancy for Reliable Processing of Data. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1960-1971.	3.2	6
107	Low Delay 3-Bit Burst Error Correction Codes. Journal of Electronic Testing: Theory and Applications (JETTA), 2019, 35, 413-420.	0.9	6
108	Reliability analysis of memories protected with BICS and a per-word parity bit. ACM Transactions on Design Automation of Electronic Systems, 2010, 15, 1-15.	1.9	5

#	Article	IF	CITATIONS
109	Implementing Concurrent Error Detection in Infinite-Impulse-Response Filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 583-586.	2.2	5
110	Efficient single event upset-tolerant FIR filter design based on residue number for OBP satellite communication systems. China Communications, 2013, 10, 55-67.	2.0	5
111	Unequal Error Protection Codes Derived from Double Error Correction Orthogonal Latin Square Codes. IEEE Transactions on Computers, 2016, 65, 2932-2938.	2.4	5
112	Detecting errors in instructions with bloom filters. , 2017, , .		5
113	Multiple Cell Upset Injection in BRAMs for Xilinx FPGAs. IEEE Transactions on Device and Materials Reliability, 2018, 18, 636-638.	1.5	5
114	Codes for Limited Magnitude Error Correction in Multilevel Cell Memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1615-1626.	3.5	5
115	Soft Error Tolerant Count Min Sketches. IEEE Transactions on Computers, 2021, 70, 284-290.	2.4	5
116	Blocking models of optical burst switches with shared wavelength converters: exact formulations and analytical approximations. Photonic Network Communications, 2008, 16, 61-70.	1.4	4
117	A method to eliminate the event accumulation problem from a memory affected by multiple bit upsets. Microelectronics Reliability, 2009, 49, 707-715.	0.9	4
118	Offset DMR: A Low Overhead Soft Error Detection and Correction Technique for Transform-Based Convolution. IEEE Transactions on Computers, 2011, 60, 1511-1516.	2.4	4
119	Reducing the Cost of Single Error Correction With Parity Sharing. IEEE Transactions on Device and Materials Reliability, 2013, 13, 420-422.	1.5	4
120	An Efficient Technique to Protect Serial Shift Registers Against Soft Errors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60, 512-516.	2.2	4
121	Optimizing the Implementation of SEC–DAEC Codes in FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 3538-3542.	2.1	4
122	Cuckoo Cache: A Technique to Improve Flow Monitoring Throughput. IEEE Internet Computing, 2016, 20, 46-53.	3.2	4
123	Combined Modular Key and Data Error Protection for Content-Addressable Memories. IEEE Transactions on Computers, 2017, 66, 1085-1090.	2.4	4
124	Reducing the Power Consumption of Fault Tolerant Registers Through Hybrid Protection. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1293-1302.	3.5	4
125	Protecting Image Processing Pipelines against Configuration Memory Errors in SRAM-Based FPGAs. Electronics (Switzerland), 2018, 7, 322.	1.8	4
126	Enhancing Instruction TLB Resilience to Soft Errors. IEEE Transactions on Computers, 2018, , 1-1.	2.4	4

#	Article	IF	CITATIONS
127	Protection Scheme for Star Tracker Images. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 486-492.	2.6	4
128	Reliability characterization and activity analysis of lowRISC internal modules against single event upsets using fault injection and RTL simulation. Microprocessors and Microsystems, 2019, 71, 102871.	1.8	4
129	Improving Packet Flow Counting With Fingerprint Counting. IEEE Communications Letters, 2020, 24, 76-80.	2.5	4
130	Exploiting Asymmetry in eDRAM Errors for Redundancy-Free Error-Tolerant Design. IEEE Transactions on Emerging Topics in Computing, 2020, , 1-1.	3.2	4
131	A Near-Sensor ECG Delineation and Arrhythmia Classification System. IEEE Sensors Journal, 2022, 22, 14217-14227.	2.4	4
132	Soft error detection and correction for FFT based convolution using different block lengths. , 2009, , .		3
133	Assembly admission control based on random packet selection at border nodes in Optical Burst-Switched networks. Photonic Network Communications, 2009, 18, 39-48.	1.4	3
134	Number of Events and Time to Failure Distributions for Error Correction Protected Memories. IEEE Transactions on Device and Materials Reliability, 2010, 10, 381-389.	1.5	3
135	Mitigating the effects of large multiple cell upsets (MCUs) in memories. ACM Transactions on Design Automation of Electronic Systems, 2011, 16, 1-10.	1.9	3
136	Enhanced Duplication: a Technique to Correct Soft Errors in Narrow Values. IEEE Computer Architecture Letters, 2013, 12, 13-16.	1.0	3
137	Soft error tolerant Content Addressable Memories (CAMs) using error detection codes and duplication. Microprocessors and Microsystems, 2013, 37, 1103-1107.	1.8	3
138	Verification of SRAM MСUs calculation technique for experiment time optimization. , 2013, , .		3
139	Optimized parallel decoding of difference set codes for high speed memories. Microelectronics Reliability, 2014, 54, 2645-2648.	0.9	3
140	Oddâ€weight olumn SEC–DED–TAED codes. Electronics Letters, 2016, 52, 119-120.	0.5	3
141	Modular fault tolerant processor architecture on a SoC for space. Microelectronics Reliability, 2018, 83, 84-90.	0.9	3
142	An Efficient Fault-Tolerance Design for Integer Parallel Matrix–Vector Multiplications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 211-215.	2.1	3
143	Fast Updates for Line-Rate HyperLogLog-Based Cardinality Estimation. IEEE Communications Letters, 2020, 24, 2737-2741.	2.5	3

144 Error Correction Coding for Electronic Circuits. , 2014, , 137-168.

#	Article	IF	CITATIONS
145	Faking Elephant Flows on the Count Min Sketch. IEEE Networking Letters, 2020, 2, 199-202.	1.5	3
146	Packet Coalescing Strategies for Energy Efficient High-Speed Communications Over Plastic Optical Fibers. Journal of Optical Communications and Networking, 2015, 7, 253.	3.3	2
147	Analysis of the Effects of Single Event Upsets (SEUs) on User Memory in FPGA Implemented Viterbi Decoders. , 2018, , .		2
148	Reliability Evaluation of Polyphase-filter based Decimators Implemented on SRAM-FPGAs. , 2019, , .		2
149	Two Bit Overlap: A Class of Double Error Correction One Step Majority Logic Decodable Codes. IEEE Transactions on Computers, 2019, 68, 798-803.	2.4	2
150	Improving Instruction TLB Reliability with Efficient Multi-bit Soft Error Protection. Microelectronics Reliability, 2019, 93, 29-38.	0.9	2
151	Scheme for periodical concurrent fault detection in parallel CRC circuits. IET Computers and Digital Techniques, 2020, 14, 80-85.	0.9	2
152	Protecting Memories against Soft Errors: The Case for Customizable Error Correction Codes. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 651-663.	3.2	2
153	Fault Tolerant Polyphase Filters-based Decimators for SRAM-based FPGA Implementations. IEEE Transactions on Emerging Topics in Computing, 2021, , 1-1.	3.2	2
154	VR-ZYCAP: A Versatile Resourse-Level ICAP Controller for ZYNQ SOC. Electronics (Switzerland), 2021, 10, 899.	1.8	2
155	Ensemble of Pruned Networks for Reliable Classifiers. , 2021, , .		2
156	Dependability Solutions. , 2018, , 155-188.		2
157	Designing ad-hoc scrubbing sequences to improve memory reliability against soft errors. , 2011, , .		1
158	Network monitoring for energy efficiency in large-scale networks: the case of the Spanish Academic Network. Journal of Supercomputing, 2012, 62, 1284-1304.	2.4	1
159	Comments on "Extend orthogonal Latin square codes for 32-bit data protection in memory applications―Microelectron. Reliab. 63, 278–283 (2016). Microelectronics Reliability, 2017, 69, 126-129.	0.9	1
160	Opcode vector: An efficient scheme to detect soft errors in instructions. Microelectronics Reliability, 2018, 86, 92-97.	0.9	1
161	A Fast Technique to Reduce Power Consumption on Linear Block Codes Used to Protect Registers. IEEE Transactions on Device and Materials Reliability, 2018, 18, 189-196.	1.5	1
162	Seu and Sefi error detection and correction on a ddr3 memory system. Microelectronics Reliability, 2018, 91, 23-30.	0.9	1

Pedro Reviriego

#	Article	IF	CITATIONS
163	Protecting Large Word Size Memories against MCUs with 3-bit Burst Error Correction. , 2019, , .		1
164	Efficient Concurrent Error Detection for SEC-DAEC Encoders. , 2019, , .		1
165	A Radiation Tolerant 10/100 Ethernet Transceiver for Space Applications. , 2019, , .		1
166	Isolation Design Flow Effectiveness Evaluation Methodology for Zynq SoCs. Electronics (Switzerland), 2020, 9, 814.	1.8	1
167	Less-is-Better Protection (LBP) for memory errors in kNNs classifiers. Future Generation Computer Systems, 2021, 117, 401-411.	4.9	1
168	Reliable Classification with Ensemble Convolutional Neural Networks. , 2020, , .		1
169	Correction Masking: A Technique to Implement Efficient SET Tolerant Error Correction Decoders. IEEE Transactions on Device and Materials Reliability, 2022, 22, 36-41.	1.5	1
170	Reduction of Parity Overhead in a Subset of Orthogonal Latin Square Codes. , 2020, , .		1
171	New Alternatives to the Estimation Problem in Hardware-Software Codesign of Complex Embedded Systems: The H.261 Video Co-dec Case Study. Design Automation for Embedded Systems, 2004, 9, 193-210.	0.7	0
172	Energy Efficiency in Ethernet. , 0, , 277-290.		0
173	Cuckoo Cache a Technique to Improve Flow Monitoring Throughput. IEEE Internet Computing, 2018, ,	3.2	0