

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8638354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plastics from renewable sources as green and sustainable alternatives. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100557.	3.2	19
2	From PEF to rPEF: disclosing the potential of deep eutectic solvents in continuous de-/re-polymerization recycling of biobased polyesters. Green Chemistry, 2022, 24, 3115-3119.	4.6	12
3	Developing future visions for bio-plastics substituting PET – A backcasting approach. Sustainable Production and Consumption, 2022, 31, 370-383.	5.7	22
4	Bisfuranic copolyesters bearing nitrated units: synthesis, thermal properties and degradation essays. Journal of Polymer Research, 2022, 29, .	1.2	1
5	Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. European Polymer Journal, 2021, 150, 110413.	2.6	10
6	Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 2021, 23, 8795-8820.	4.6	77
7	Biobased furanic derivatives for sustainable development. Green Chemistry, 2021, 23, 9721-9722.	4.6	5
8	A Perspective on PEF Synthesis, Properties, and End-Life. Frontiers in Chemistry, 2020, 8, 585.	1.8	110
9	Enzymatic Synthesis of Poly(caprolactone): A QM/MM Study. ChemCatChem, 2020, 12, 4845-4852.	1.8	7
10	Asymmetric Monomer, Amorphous Polymer? Structure–Property Relationships in 2,4-FDCA and 2,4-PEF. Macromolecules, 2020, 53, 1380-1387.	2.2	24
11	Replacing Di(2-ethylhexyl) Terephthalate by Di(2-ethylhexyl) 2,5-Furandicarboxylate for PVC Plasticization: Synthesis, Materials Preparation and Characterization. Materials, 2019, 12, 2336.	1.3	25
12	Highly transparent films of new copolyesters derived from terephthalic and 2,4-furandicarboxylic acids. Polymer Chemistry, 2019, 10, 5324-5332.	1.9	22
13	Co-Polymers based on Poly(1,4-butylene 2,5-furandicarboxylate) and Poly(propylene oxide) with Tuneable Thermal Properties: Synthesis and Characterization. Materials, 2019, 12, 328.	1.3	9
14	Cinnamic acid derivatives as promising building blocks for advanced polymers: synthesis, properties and applications. Polymer Chemistry, 2019, 10, 1696-1723.	1.9	66
15	Tailored design of renewable copolymers based on poly(1,4-butylene 2,5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties. Polymer Chemistry, 2018, 9, 722-731.	1.9	49
16	Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules, 2018, 51, 3515-3526.	2.2	110
17	Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and Poly(Butylene) Tj ETQq1	1 0.7843 2.0	814.rgBT /Ov
18	Bio-based poly(butylene 2,5-furandicarboxylate)-b-poly(ethylene glycol) copolymers with adjustable degradation rate and mechanical properties: Synthesis and characterization. European Polymer Journal, 2018, 106, 42-52.	2.6	57

A F Sousa

#	Article	IF	CITATIONS
19	Improving the Thermal Properties of Poly(2,5â€furandicarboxylate)s Using Cyclohexylene Moieties: A Comparative Study. Macromolecular Chemistry and Physics, 2017, 218, 1600492.	1.1	28
20	Thermosetting AESO-bacterial cellulose nanocomposite foams with tailored mechanical properties obtained by Pickering emulsion templating. Polymer, 2017, 118, 127-134.	1.8	25
21	Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources. European Polymer Journal, 2017, 90, 301-311.	2.6	45
22	Increasing the Bile Acid Sequestration Performance of Cationic Hydrogels by Using an Advanced/Controlled Polymerization Technique. Pharmaceutical Research, 2017, 34, 1934-1943.	1.7	6
23	Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks. International Journal of Biological Macromolecules, 2016, 93, 686-694.	3.6	12
24	Renewable-based poly((ether)ester)s from 2,5-furandicarboxylic acid. Polymer, 2016, 98, 129-135.	1.8	58
25	New unsaturated copolyesters based on 2,5-furandicarboxylic acid and their crosslinked derivatives. Polymer Chemistry, 2016, 7, 1049-1058.	1.9	60
26	Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives. , 2015, , 113-141.		7
27	Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polymer Chemistry, 2015, 6, 5961-5983.	1.9	531
28	A New Generation of Furanic Copolyesters with Enhanced Degradability: Poly(ethylene) Tj ETQq0 0 0 rgBT /Ove Physics, 2014, 215, 2175-2184.	rlock 10 Tf 1.1	50 387 Td (2 92
29	Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation. RSC Advances, 2014, 4, 2993-3002.	1.7	42
30	The quest for sustainable polyesters – insights into the future. Polymer Chemistry, 2014, 5, 3119-3141.	1.9	438
31	One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose, 2014, 21, 1723-1733.	2.4	12
32	Ex Situ Reconstitution of the Plant Biopolyester Suberin as a Film. Biomacromolecules, 2014, 15, 1806-1813.	2.6	44
33	Novel sustainable composites prepared from cork residues and biopolymers. Biomass and Bioenergy, 2013, 55, 148-155.	2.9	39
34	Phenolic composition and antioxidant activity of industrial cork by-products. Industrial Crops and Products, 2013, 47, 262-269.	2.5	65
35	Microwave assisted extraction of betulin from birch outer bark. RSC Advances, 2013, 3, 21285.	1.7	14
36	Isolation of suberin from birch outer bark and cork using ionic liquids: A new source of macromonomers. Industrial Crops and Products, 2013, 44, 520-527.	2.5	76

A F Sousa

#	Article	IF	CITATIONS
37	New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: A step forward in the development of biobased polyesters. Polymer, 2013, 54, 513-519.	1.8	136
38	Suberin isolation from cork using ionic liquids: characterisation of ensuing products. New Journal of Chemistry, 2012, 36, 2014.	1.4	54
39	Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems. High Performance Polymers, 2012, 24, 4-8.	0.8	29
40	Novel suberinâ€based biopolyesters: From synthesis to properties. Journal of Polymer Science Part A, 2011, 49, 2281-2291.	2.5	48
41	Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: A comparative study. Industrial Crops and Products, 2009, 29, 126-132.	2.5	100
42	The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources. Journal of Polymer Science Part A, 2009, 47, 295-298.	2.5	425
43	Determination of the Hydroxy and Carboxylic Acid Groups in Natural Complex Mixtures of Hydroxy Fatty Acids by ¹ H Nuclear Magnetic Resonance Spectroscopy. Applied Spectroscopy, 2009, 63, 873-878.	1.2	10
44	Synthesis and Characterization of Novel Biopolyesters from Suberin and Model Comonomers. ChemSusChem, 2008, 1, 1020-1025.	3.6	45
45	Triterpenic and Other Lipophilic Components from Industrial Cork Byproducts. Journal of Agricultural and Food Chemistry, 2006, 54, 6888-6893.	2.4	60
46	Improving regioselectivity in the rhodium catalyzed hydroformylation of protoporphyrin-IX and chlorophyll a derivatives. Journal of Molecular Catalysis A, 2005, 235, 185-193.	4.8	10
47	Polymer distribution in connected spherical domains. Journal of Chemical Physics, 2005, 122, 214902.	1.2	9
48	Infrared spectroscopy and the characterization of terfenadine crystallized from solvents. Journal of Thermal Analysis and Calorimetry, 2003, 73, 763-774.	2.0	0
49	Molecular dynamics simulation of the terfenadine monomer and dimer, including solvent effects. Molecular Physics, 2003, 101, 871-879.	0.8	1
50	Solvation of alkane and alcohol molecules. Energy contributions. Physical Chemistry Chemical Physics, 2001, 3, 4001-4009.	1.3	25