A F Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8638354/publications.pdf

Version: 2024-02-01

50 papers	3,210 citations	218592 26 h-index	197736 49 g-index
papero		II IIIGOX	5 maex
51 all docs	51 docs citations	51 times ranked	2965 citing authors

#	Article	lF	CITATIONS
1	Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polymer Chemistry, 2015, 6, 5961-5983.	1.9	531
2	The quest for sustainable polyesters – insights into the future. Polymer Chemistry, 2014, 5, 3119-3141.	1.9	438
3	The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources. Journal of Polymer Science Part A, 2009, 47, 295-298.	2.5	425
4	New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: A step forward in the development of biobased polyesters. Polymer, 2013, 54, 513-519.	1.8	136
5	Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules, 2018, 51, 3515-3526.	2.2	110
6	A Perspective on PEF Synthesis, Properties, and End-Life. Frontiers in Chemistry, 2020, 8, 585.	1.8	110
7	Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: A comparative study. Industrial Crops and Products, 2009, 29, 126-132.	2.5	100
8	A New Generation of Furanic Copolyesters with Enhanced Degradability: Poly(ethylene) Tj ETQq0 0 0 rgBT /Over Physics, 2014, 215, 2175-2184.	lock 10 Tf 1.1	50 467 Td (2, 92
9	Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 2021, 23, 8795-8820.	4.6	77
10	Isolation of suberin from birch outer bark and cork using ionic liquids: A new source of macromonomers. Industrial Crops and Products, 2013, 44, 520-527.	2. 5	76
11	Cinnamic acid derivatives as promising building blocks for advanced polymers: synthesis, properties and applications. Polymer Chemistry, 2019, 10, 1696-1723.	1.9	66
12	Phenolic composition and antioxidant activity of industrial cork by-products. Industrial Crops and Products, 2013, 47, 262-269.	2.5	65
13	Triterpenic and Other Lipophilic Components from Industrial Cork Byproducts. Journal of Agricultural and Food Chemistry, 2006, 54, 6888-6893.	2.4	60
14	New unsaturated copolyesters based on 2,5-furandicarboxylic acid and their crosslinked derivatives. Polymer Chemistry, 2016, 7, 1049-1058.	1.9	60
15	Renewable-based poly((ether)ester)s from 2,5-furandicarboxylic acid. Polymer, 2016, 98, 129-135.	1.8	58
16	Bio-based poly(butylene 2,5-furandicarboxylate)-b-poly(ethylene glycol) copolymers with adjustable degradation rate and mechanical properties: Synthesis and characterization. European Polymer Journal, 2018, 106, 42-52.	2.6	57
17	Suberin isolation from cork using ionic liquids: characterisation of ensuing products. New Journal of Chemistry, 2012, 36, 2014.	1.4	54
18	Tailored design of renewable copolymers based on poly(1,4-butylene 2,5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties. Polymer Chemistry, 2018, 9, 722-731.	1.9	49

#	Article	IF	CITATIONS
19	Novel suberinâ€based biopolyesters: From synthesis to properties. Journal of Polymer Science Part A, 2011, 49, 2281-2291.	2.5	48
20	Synthesis and Characterization of Novel Biopolyesters from Suberin and Model Comonomers. ChemSusChem, 2008, 1, 1020-1025.	3.6	45
21	Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources. European Polymer Journal, 2017, 90, 301-311.	2.6	45
22	Ex Situ Reconstitution of the Plant Biopolyester Suberin as a Film. Biomacromolecules, 2014, 15, 1806-1813.	2.6	44
23	Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation. RSC Advances, 2014, 4, 2993-3002.	1.7	42
24	Novel sustainable composites prepared from cork residues and biopolymers. Biomass and Bioenergy, 2013, 55, 148-155.	2.9	39
25	Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems. High Performance Polymers, 2012, 24, 4-8.	0.8	29
26	Improving the Thermal Properties of Poly(2,5â€furandicarboxylate)s Using Cyclohexylene Moieties: A Comparative Study. Macromolecular Chemistry and Physics, 2017, 218, 1600492.	1.1	28
27	Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and Poly(Butylene) Tj ETQq1	1.0.7843 2.0	14 rgBT /0\ 28
28	Solvation of alkane and alcohol molecules. Energy contributions. Physical Chemistry Chemical Physics, 2001, 3, 4001-4009.	1.3	25
29	Thermosetting AESO-bacterial cellulose nanocomposite foams with tailored mechanical properties obtained by Pickering emulsion templating. Polymer, 2017, 118, 127-134.	1.8	25
30	Replacing Di(2-ethylhexyl) Terephthalate by Di(2-ethylhexyl) 2,5-Furandicarboxylate for PVC Plasticization: Synthesis, Materials Preparation and Characterization. Materials, 2019, 12, 2336.	1.3	25
31	Asymmetric Monomer, Amorphous Polymer? Structure–Property Relationships in 2,4-FDCA and 2,4-PEF. Macromolecules, 2020, 53, 1380-1387.	2.2	24
32	Highly transparent films of new copolyesters derived from terephthalic and 2,4-furandicarboxylic acids. Polymer Chemistry, 2019, 10, 5324-5332.	1.9	22
33	Developing future visions for bio-plastics substituting PET – A backcasting approach. Sustainable Production and Consumption, 2022, 31, 370-383.	5.7	22
34	Plastics from renewable sources as green and sustainable alternatives. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100557.	3.2	19
35	Microwave assisted extraction of betulin from birch outer bark. RSC Advances, 2013, 3, 21285.	1.7	14
36	One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose, 2014, 21, 1723-1733.	2.4	12

#	Article	IF	CITATIONS
37	Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks. International Journal of Biological Macromolecules, 2016, 93, 686-694.	3. 6	12
38	From PEF to rPEF: disclosing the potential of deep eutectic solvents in continuous de-/re-polymerization recycling of biobased polyesters. Green Chemistry, 2022, 24, 3115-3119.	4.6	12
39	Improving regioselectivity in the rhodium catalyzed hydroformylation of protoporphyrin-IX and chlorophyll a derivatives. Journal of Molecular Catalysis A, 2005, 235, 185-193.	4.8	10
40	Determination of the Hydroxy and Carboxylic Acid Groups in Natural Complex Mixtures of Hydroxy Fatty Acids by ¹ H Nuclear Magnetic Resonance Spectroscopy. Applied Spectroscopy, 2009, 63, 873-878.	1.2	10
41	Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. European Polymer Journal, 2021, 150, 110413.	2.6	10
42	Polymer distribution in connected spherical domains. Journal of Chemical Physics, 2005, 122, 214902.	1.2	9
43	Co-Polymers based on Poly(1,4-butylene 2,5-furandicarboxylate) and Poly(propylene oxide) with Tuneable Thermal Properties: Synthesis and Characterization. Materials, 2019, 12, 328.	1.3	9
44	Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives., 2015, , 113-141.		7
45	Enzymatic Synthesis of Poly(caprolactone): A QM/MM Study. ChemCatChem, 2020, 12, 4845-4852.	1.8	7
46	Increasing the Bile Acid Sequestration Performance of Cationic Hydrogels by Using an Advanced/Controlled Polymerization Technique. Pharmaceutical Research, 2017, 34, 1934-1943.	1.7	6
47	Biobased furanic derivatives for sustainable development. Green Chemistry, 2021, 23, 9721-9722.	4.6	5
48	Molecular dynamics simulation of the terfenadine monomer and dimer, including solvent effects. Molecular Physics, 2003, 101, 871-879.	0.8	1
49	Bisfuranic copolyesters bearing nitrated units: synthesis, thermal properties and degradation essays. Journal of Polymer Research, 2022, 29, .	1.2	1
50	Infrared spectroscopy and the characterization of terfenadine crystallized from solvents. Journal of Thermal Analysis and Calorimetry, 2003, 73, 763-774.	2.0	0